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Chapter 1

Combinatorial Analysis

1.1 The Basic Principle of Counting

Many problems in Probability Theory can be solved simply by counting the number of
different ways that a certain event can occur. Effective methods for counting would then
be useful in our study of probability. The mathematical theory of counting is formally
known as Combinatorial Analysis. Most of the concepts in this chapter have already been
covered in high school or Olympiad Mathematics. Hopefully, they would be a breeze.

Proposition 1.1 (addition principle). If there are r choices for performing a
particular task, and the number of ways to carry out the kth choice is nk, for
1 ≤ k ≤ r, the total number of ways of performing the particular task is equal to
the sum of the number of ways for all the r different choices, i.e.

n1 + n2 + . . . + nr.

The different choices cannot occur at the same time.

Proposition 1.2 (multiplication principle). If one task can be performed in m ways,
and following this, a second task can be performed in n ways (regardless of which
way the first task was performed), then the number of ways of performing the 2
tasks in succession is mn.

This can be applied to 2 or more tasks performed independently in succession. In
general, if the kth task can be performed in mk ways, where 1 ≤ k ≤ r then the
number of ways of performing the r tasks in succession is

m1m2 . . . mn.

Example 1.1 (ST2131 AY24/25 Sem 1 Lecture 1). A 4-digit code is to be formed using
the digits 0, 1, 2, . . . , 9.

(a) How many codes can be formed?
(b) If the digits may not be repeated, how many codes can be formed

Solution.
(a) 104 = 10000
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(b) 10 × 9 × 8 × 7 = 5040
Example 1.2 (Ross p. 68 Question 1). A cafeteria offers a three-course meal consisting
of an entree, a starch and a dessert. The possible choices are given in the following table
A person is to choose one course from each category.

Course Choices

Entree Chicken or roast beef

Starch Pasta or rice or potatoes

Dessert Ice cream or jello or apple pie or a peach

(a) How many outcomes are in the sample space?
(b) Let A be the event that ice cream is chosen. How many outcomes are in A?
(c) Let B be the event that chicken is chosen. How many outcomes are in B?
(d) List all the outcomes in the event AB

(e) Let C be the event that rice is chosen. How many outcomes are in C?
(f) List all the outcomes in the event ABC.

Solution. Omitted. □

Example 1.3 (ST2131 AY22/23 Sem 2 Tutorial 1). Consider a group of 20 people. If
everyone shakes hands with everyone else, how many handshakes take place?

Solution. Label the 20 people as P1, P2, . . . , P20. Then, P1 can shake the hands of
P2, P3, . . . , P20, so there are 19 ways to do so. P2 can shake the hands of P3, P4, . . . , P20,
so there are 18 ways to do so. Repeat this till P19 who can only shake P20’s hand. The
required number of ways is

19 + 18 + . . . + 1 = 19 · 20
2

so there are 190 ways to do so. □

We can formulate a similar question (compare with Example 1.3) with an identical line
of reasoning. Given a regular n-sided polygon, how many ways are there to connect
the vertices? This is closely tied to a mathematics branch known as Graph Theory. In
general, if there are n people, there are a total of

n(n − 1)
2 =

(
n

2

)
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handshakes. In Graph Theory, there is a similar idea to this known as the handshaking
lemma. For example, in the complete graph on 6 vertices (denoted by K6), every vertex
is adjacent to the other 5, so the graph has 15 interior edges (Figure 1).

1

2

3

4

5

6

Figure 1: Complete graph K6

1.2 Permutations and Combinations

Definition 1.1 (permutation). A permutation is an ordered arrangement of objects.

When we are dealing with permutations, order matters, i.e. the 3-letter arrangement
of ABC and ACB are considered.

Proposition 1.3. Given n distinct objects, the total number of ways of arranging
all these n objects in a line is n!.

Proof. There are n ways to put the first object in the first slot, n − 1 ways to put
the second object in the second slot. Repeating this process up to the last slot, by the
multiplication principle (Proposition 1.2), we have only 1 way to put the last object
there.

Proposition 1.4 (permutations involving identical objects). Given n objects of which
n1 are identical, n2 are identical, and all the way up to nr are identical, there are

n!
n1!n2! . . . nr!

different permutations of the n objects, where n1 + n2 + . . . + nr = n.
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Example 1.4 (ST2131 AY24/25 Sem 1 Lecture 1). 6 boys and 4 girls compete in a running
race (no tie). If the boys and the girls run together, how many different finishing orders
are possible? If the boys and the girls run separately, how many different finishing orders
are possible?

Solution. For the first part, 10! = 3628800; for the second part, 6! × 4! = 17280. □

Now, we will discuss circular permutations. If we have n people sitting in a circle,
there are

n!
n

= (n − 1)!

ways to arrange them. A simple way to understand this is that a circle has no beginning
and no end, so we divide the number of linear permutations by the number of people.

Definition 1.2 (combination). If there are n distinct objects, of which we choose a
group of r items, the number of groups, denoted by

(n
r

)
, can be written as(

n

r

)
= n!

r!(n − r)! .

Proposition 1.5 (symmetry of binomial coefficients). We have(
n

r

)
=
(

n

n − r

)
for all 0 ≤ r ≤ n where n ∈ Z≥0.

A special case is the following identity:(
n

0

)
=
(

n

n

)
= 1,

which can be obtained by considering the formula for r combinations out of n objects
(Definition 1.2). In particular, setting r = 0 and r = n will yield this result.

Proof. As for the general case
(n

r

)
=
( n

n−r

)
, the algebraic proof is simple but not as

meaningful as its combinatorial counterpart. As such, we provide a proof for the latter.
There are two ways to select a group of r items from a group of n, which picking the r

items that you’re going to include or picking the n − r items that you are going to leave
out. Either way, the number of ways of forming the collection using the first method
must be equal to the number of ways of forming the collection using the second.
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Theorem 1.1 (Pascal’s identity). For n, k ∈ N,(
n

k

)
=
(

n − 1
k − 1

)
+
(

n − 1
k

)
.

Proof. Consider picking one fixed object out of n objects. Then, we can choose k objects
including that one in

(n−1
k−1
)

ways. As our final group of objects either contains the
specified one or doesn’t, we can choose the group in

(n−1
k−1
)

+
(n−1

k

)
ways. However, we

already know they can be picked in
(n

k

)
ways, so the result follows.

Example 1.5 (recurrence relation induction). If pm,n satisfies the recurrence relation

pm,n = 1
2 (pm,n−1 + pm−1,n) ,

prove that

pm,n = 1
2m+n−1

m+n−1∑
k=m

(
m + n − 1

k

)
.

This recurrence relation appears in a classic problem in Probability Theory known as
the problem of points. It asks how to fairly divide the stakes of a game of chance that
is interrupted before its conclusion, given that each player has a certain probability
of winning if the game were to continue. The problem was famously debated in 1654
between two mathematical giants, Blaise Pascal and Pierre de Fermat, through a series
of letters.

Solution. Note the initial conditions pm,0 = 0 and p0,n = 1. Set q = m + n − 1. Let P (q)
be the proposition that

pm,n = 1
2q

q∑
k=m

(
q

k

)

for q ∈ Z≥0. The case where q = −1, which is obtained when m = n = 0, is neglected. The
base case q = 0 is true. To see why, we have m + n = 1 so we have either (m, n) = (1, 0)
or (m, n) = (0, 1). Then, use the formula given in the proposition. Assume P (r) to be
true for some r ∈ Z≥0. Then, we wish to prove that P (r + 1) is true.

We have r + 1 = m + n so we consider the cases pm+1,n and pm,n+1 while assuming
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the validity of pm,n. We have

pm+1,n = 1
2 (pm+1,n−1 + pm,n)

= 1
2m+n

m+n−1∑
k=m+1

(
m + n − 1

k

)
+ 1

2m+n

m+n−1∑
k=m

(
m + n − 1

k

)

= 1
2m+n

m+n−1∑
k=m+1

(
m + n − 1

k

)
+

m+n−1∑
k=m

(
m + n − 1

k

)
It now suffices to prove

m+n−1∑
k=m+1

(
m + n − 1

k

)
+

m+n−1∑
k=m

(
m + n − 1

k

)
=

m+n∑
k=m+1

(
m + n

k

)
.

This is trivial by Pascal’s identity (Theorem 1.1). The reader can prove the case for
pm,n+1 similarly. Hence, the result follows by induction. □

The recurrence relation in Example 1.5 is rather interesting. It is in fact directly
related to the following probability problem: in a sequence of independent tosses of a
fair coin, what is the probability that the first to occur is m heads before n tails? This
is just for you to ponder over — we will discuss such problems in due course.
Example 1.6 (ST2131 AY24/25 Sem 2 Tutorial 1). From a group of n people, suppose
that we want to choose a committee of k, where k ≤ n, one of whom is designated as
chairperson.

(i) By focusing first on the choice of the committee and then on the choice of the
chair, argue that there are

(n
k

)
k possible choices.

(ii) By focusing first on the choice of the non-chair committee members and then the
choice of the chair, argue that there are

( n
k−1
)

(n − k + 1) possible choices.
(iii) By focusing first on the choice of the chair and then the choice of the committee

members, argue that there are n
(n−1

k−1
)

possible choices.
There was originally a (iv) to this problem which asked the reader to deduce that(

n

k

)
k =

(
n

k − 1

)
(n − k + 1) = n

(
n − 1
k − 1

)

which follows from the first three parts (i), (ii), and (iii) — it is just the same event
viewed from three different points-of-view.
Solution.

(i) There are
(n

k

)
ways to form the committee of k, and

(k
1
)

= k ways to assign a
chairperson. Then, apply the multiplication principle.
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(ii) We form the non-chair committee members, so there are
( n

k−1
)

ways. Then, we
choose one chairperson from the remaining n − (k − 1) people, for which there are(n−k+1

1
)

= n − k + 1 ways. Lastly, apply the multiplication principle.
(iii) We first choose the chairperson, for which there are

(n
1
)

= n ways. Then, we choose
the k − 1 committee members from n − 1 persons, for which there are

(n−1
k−1
)

ways.
Lastly, apply the multiplication principle.

Example 1.7. Give an analytic verification of

k

(
n

k

)
= (n − k + 1)

(
n

k − 1

)
= n

(
n − 1
k − 1

)
where 1 ≤ k ≤ n.

Now, give a combinatorial proof for this identity.

Solution. We first give an analytic representation. We have

k

(
n

k

)
= k · n!

k! (n − k)!

= (n − k + 1) · n!
(k − 1)! (n − k + 1)!

= (n − k + 1)
(

n

k − 1

)
We then prove the second equality. We have

k

(
n

k

)
= k · n!

k! (n − k)!

= n · (n − 1)!
(k − 1)! (n − k)!

= n

(
n − 1
k − 1

)
which shows that the identity holds.

We then give a combinatorial proof of the identity. Say we have a group of n persons.
Say we wish to choose k students to be part of a committee, and elect 1 person to be
the President. There are

(n
k

)(k
1
)

= k
(n

k

)
ways to do so.

Another way of formulating this is to choose the President first in
(n

1
)

= n ways, then
form the committee (which requires k − 1 persons) in

(n−1
k−1
)

ways. It follows that

k

(
n

k

)
= n

(
n − 1
k − 1

)
.
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Alternatively, we choose the non-Presidents first in
( n

k−1
)

ways, then from the remaining
n − (k − 1) persons, we choose the President, which shows that

k

(
n

k

)
= (n − k + 1) .

The result follows. □

Example 1.8 (Ross p. 33 Question 17). Give an analytic verification of(
n

2

)
=
(

k

2

)
+ k(n − k) +

(
n − k

2

)
where 1 ≤ k ≤ n.

Now give a combinatorial argument for this identity.

Solution. The analytic verification is trivial. We now give a combinatorial interpretation.
The binomial coefficient

(n
2
)

represents the number of ways to choose 2 numbers in
1 ≤ k ≤ n. We then classify a chosen pair according to how many of the two elements
lie in the first k numbers and the last n − k numbers.

• Case 1: Suppose both numbers chosen are in [1, k]. Then, there are
(k

2
)

ways.
• Case 2: Suppose both numbers chosen are in [k + 1, n]. Then, there are

(n−k
2
)

ways.
• Case 3: Suppose the first number is chosen in [1, k] and the second number is

chosen in [k + 1, n]. Then, there are k (n − k) ways.
The cases are disjoint so the result follows by the addition principle. □

We then introduce the binomial theorem†.

Theorem 1.2 (binomial theorem). Let n ∈ Z≥0. Then,

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k.

The term
(n

k

)
is referred to as the binomial coefficient.

†Pascal’s triangle is a triangular array of the binomial coefficients that arises in Probability theory and
Combinatorics. There are interesting patterns which arise due to the features of the triangle such as
the Pascal’s identity (Theorem 1.1) and the binomial coefficients (Proposition 1.5) aformentioned, and
others including the triangular numbers and Fibonacci numbers. You can find a document containing
some fascinating patterns and the link to it is here.

https://w.mav.vic.edu.au/files/2017/MAV17-Conference/MAV17_presentations/Pascals_Triangle_MAV17.pdf
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Corollary 1.1 (sum of binomial coefficients).

n∑
k=0

(
n

k

)
= 2n

Proof. Set x = y = 1 in the binomial theorem formula (Theorem 1.2). Combinatorially,
we can also view this result as follows. If a set has n elements, then the number of
subsets, including the null set and itself, is 2n. This is because every element can be
chosen or not chosen during the selection process. Since there are n elements, the result
follows.

Corollary 1.2 (alternating sum of binomial coefficients).

n∑
k=0

(
n

k

)
(−1)k = 0

Proof. Set x = 1 and y = −1 in the binomial theorem formula (Theorem 1.2).

Example 1.9 (ST2131 AY22/23 Sem 2 Tutorial 2). Consider the following combinatorial
identity:

n∑
k=1

k

(
n

k

)
= n2n−1

Present a combinatorial argument for this identity by considering a set of n people, in
two ways, the number of possible selections of a committee of any size and a chairperson
for the committee.

Solution. We focus on the right side of the equation first. Say we wish to form a
committee of size 3 (start with a small number other than 1 or 2 to illustrate) and one
of them is the chairperson. There are

(n
3
)

ways to form the committee, and thereafter,(3
1
)

ways to choose one of the 3 persons to be the chairperson.

Hence, it is easy to see that the number of ways to form a committee of size k, where
1 ≤ k ≤ n, such that 1 of the persons in the committee of k is the chairperson, is(

n

k

)(
k

1

)
= k

(
n

k

)
.

We take the sum as k runs from 1 to n, which yields the left side of the equation.

On the right side of the equation, we select the chairperson first. There are
(n

1
)

= n
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ways to do so. We then choose any subset of the remaining n − 1 people in 2n−1 ways.

As such, we have established a bijection, so the two quantities must be equal. □

Theorem 1.3 (hockey-stick identity). For any n, r ∈ N where r ≤ n,

n∑
k=r

(
k

r

)
=
(

n + 1
r + 1

)
.

Proof. This can be proven via induction or repeatedly applying Pascal’s identity
(Theorem 1.1).

Theorem 1.4 (Vandermonde’s identity). Any combination of r objects from a
group of m + n objects must have some 0 ≤ k ≤ r objects from group m and the
remaining from group n. That is,

r∑
k=0

(
m

k

)(
n

r − k

)
=
(

m + n

r

)
.

Proof. We provide a combinatorial proof of this result†. Consider a group of m men
and n women. Suppose we wish to form a group of size r. Then, we can select k men
out of the r, and consequently, r − k women will be chosen. We can vary k from 0 to
r inclusive, and by combining this fact with the multiplication principle, we obtain the
LHS. The RHS can be obtained by simply considering the fact that we have m + n men
and women and we wish to form a group of size r, there are

(m+n
r

)
ways to do so.

Corollary 1.3.
p∑

k=0

(
p

k

)
=
(

2p

p

)

Proof. Set m = n = p in Vandermonde’s identity (Theorem 1.4).

1.3 Multinomial Coefficients

Theorem 1.5 (multinomial theorem). For any r ∈ Z+ and n ∈ Z≥0, the multinomial
theorem describes how a sum with m terms expands when raised to an arbitrary

†This question also appeared in ST2131 AY24/25 Sem 2 Tutorial 1.
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power n, i.e.

(x1 + x2 + · · · + xr)n =
∑

k1+k2+···+kr=n

(
n

k1, k2, . . . , kr

)
r∏

t=1
xkt

t ,

where
( n

k1,k2,...,kr

)
is a multinomial coefficient.

Note that the binomial theorem (Theorem 1.2) is a special case of the multinomial
theorem — the former can be obtained by setting n = 2.
Example 1.10 (ST2131 AY24/25 Sem 1 Lecture 2). A group of 9 gamers are playing
computer games.

(a) The first game consists of three different tasks presented at the same time.
The gamers divide themselves into three groups of 3 to work on the problems
simultaneously. How many divisions are possible?

(b) The second game requires three teams to play simultaneously, each team against
the other two. The gamers divide themselves into three groups of 3 to play this
game. How many divisions are possible?

Solution.
(a) Distribute the 9 people into 3 ordered groups, which yields

( 9
3,3,3

)
. This is precisely

the definition of the multinomial coefficient.
(b) Now that the tasks are not involved, the order does not matter, i.e. the groups are

the same. The possible number of divisions is

1
3!

(
9

3, 3, 3

)
.

Example 1.11 (ST2131 AY24/25 Sem 1 Lecture 2). A standard deck of 52 cards is dealt
out randomly to 4 players, each getting 13 cards. The picture cards are the J, Q, K of
each suit. What is the probability that each player receives exactly three picture cards?

Solution. (
12

3, 3, 3, 3

)(
40

10, 10, 10, 10

)
(

52
13, 13, 13, 13

)
□

Example 1.12 (ST2131 AY24/25 Sem 1 Lecture 3). In an office of workers, there are 4
men and 4 women.
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(a) If the 8 workers are randomly divided into 4 pairs, what is the probability that
exactly 2 pairs are of mixed gender?

(b) If the 8 workers are randomly divided into 2 teams of four, what is the probability
that in every team the four workers are of the same gender?

Solution.
(a) (4

2
)2 × 2! ×

(2
2
)2( 8

2,2,2,2
)
/4!

(b) In the probability space, there are a total of
( 8

4,4
)
/2! outcomes. For the favourable

outcomes, it is a simple calculation of
(4

4
)(4

4
)
. The desired probability is

(4
4
)2( 8

4,4
)
/2!

.

1.4 Distribution Problems and an Application to Linear Diophantine
Equations

Proposition 1.6 (distribution of identical objects into distinct boxes). We consider
two cases.

(i) Case 1: To distribute r identical objects into n distinct boxes, where r, n ∈
N, the number of ways is (

r + n − 1
n − 1

)
.

(ii) Case 2: To distribute r identical objects into n distinct boxes, where r, n ∈
N, such that no box is empty, the number of ways is(

r − 1
n − 1

)
.

Proof. We only prove (ii). We distribute 1 object into each of the n boxes. In total,
we distribute n objects and have r − n objects left. Now, the problem translates to
distributing r − n identical objects into n distinct boxes without restrictions, which is
simply (

r − n + n − 1
n − 1

)
=
(

r − 1
n − 1

)
.
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Example 1.13. Consider a problem in which we are attempting to find the number of
distributions of 8 identical objects among 5 distinct bins, and bins cannot be left empty.
How many ways are there to do this?

Solution. Modelling the problem as stars and bars, it would start off by looking like as
follows:

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

The objects are represented by the stars and the gaps between the bars are represented
by the bins. In other words, we regard the bars as a partition. Note that each bin is
non-empty, so we distribute 5 of the 8 objects into each bin, so each bin receives one
object. Now, this becomes the usual stars and bars problem, so the required answer is
(3 + 4 − 1)!/ (4!3!) =

(7
4
)

= 35. □

Proposition 1.7 (distribution of distinct objects into distinct boxes). We consider
three cases. Let r, n ∈ N.

(i) Case 1: To distribute r distinct objects into n distinct boxes such that each
box can hold at most 1 object, where r ≤ n, the number of ways is

n!
(n − r)! .

(ii) Case 2: To distribute r distinct objects into n distinct objects such that
each box can hold any number of objects, the number of ways is nr.

(iii) Case 3: To distribute r distinct objects into n distinct objects, where r ≥ n

such that no box is empty, the number of ways is

S (r, n) n! =
n∑

i=0
(−1)i

(
n

i

)
(n − i)r.

S (r, n) is known as the Stirling numbers of the second kind (Definition 1.4).

Proof. We first prove (i). The first object goes into the first box. There are n ways to
do this. The second object goes into the second box and there are n − 1 ways to do so.
Repeating to the rth object, there are n − r + 1 ways for it to go into the nth box. By

the multiplication principle the required number of ways is n (n − 1) (n − 2) . . . (n − r + 1) ,

which yields the desired expression.

As for (ii), the first object can go into the first box and there are n ways to do it. The
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same can be said for the remaining objects. We will not discuss the proof of (iii) but
anyway, it would rely on the principle of inclusion and exclusion (Proposition 2.1).

Before we discuss the Stirling numbers of the second kind, we shall start with the
Stirling numbers of the first kind! We denote the latter by s (r, n) and the former by
S (r, n). These types of numbers are named after the Scottish mathematician James
Stirling. He is known for Stirling’s approximation

n! ∼
√

2nπ

(
n

e

)n

which involves an asymptotic formula for n! for large values of n.

Definition 1.3 (Stirling numbers of the first kind). Given r, n ∈ Z such that 0 ≤
n ≤ r, let s (r, n) be the number of ways to arrange r distinct objects around n

indistinguishable circles such that each circle has at least one object.

Proposition 1.8. Here are some obvious results.
(i) For r ≤ 1, s (r, 0) = 0

(ii) For r ≥ 0, s (r, r) = 1
(iii) For r ≥ 2, s (r, 1) = (r − 1)!
(iv) For r ≥ 2, s (r, r − 1) =

(r
2
)

Proposition 1.9. Here is a useful recurrence relation for s (r, n). That is,

s (r, n) = s (r − 1, n − 1) + (r − 1) s (r − 1, n) .

Proof. Fix an object a1. Then, we have two cases, which are namely (i) a1 is the only
object in a circle and (ii) a1 is mixed with other objects.

For (i), we shift our focus to the remaining r − 1 objects. We distribute these objects
around the remaining n − 1 objects, and there are s (r − 1, n − 1) ways to do so by
definition. For (ii), we have r − 1 objects left to distribute around n tables. a1 can
be placed in either one of the r − 1 distinct spaces to the immediate right of the
corresponding r − 1 distinct objects.

As the two cases are mutually exclusive, the result follows by the addition principle.

Definition 1.4 (Stirling numbers of the second kind). Given r, n ∈ Z≥0 where 0 ≤
n ≤ r, the Sitrling numbers of the second kind, S (r, n), is defined as the number
of ways of distributing r objects into n identical boxes such that no box is empty.
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Proposition 1.10. Here are some obvious results.
(i) S (r, 1) = S (r, r) = 1

(ii) For 1 ≤ r < k, S (r, k) = 0
(iii) For r, k ≥ 1, S (r, 0) = S (0, k) = 0
(iv) For r ≥ 1, S (r, 2) = 2r−1 − 1
(v) For r ≥ 1, S (r, r − 1) =

(r
2
)

Proof. We will only prove (iv). The complement of the case where no box is empty is
that one box is empty. The number of ways to distribute r distinct objects into 1 box is
1. Since each object can go into either box, there are 2r ways to distribute, but we also
have to consider that the boxes are identical, so we have to divide by 2. Thus, there are
2r−1 ways to distribute r distinct objects into 2 identical boxes without restrictions. The
result follows.

Similar to the Stirling numbers of the first kind, we have a similar recurrence relation
for the Stirling numbers of the second kind, which is slightly easier to derive since we
are not considering circular permutations.

Proposition 1.11. Here is a useful recurrence relation for S (r, n). That is,

S (r, n) = S (r − 1, n − 1) + nS (r − 1, n) .

Proof. Fix an object a1. Then, we have two cases, which are namely (i) a1 is the only
object in a box and (ii) a1 is mixed with other objects.

For (i), we shift our focus to the remaining r − 1 objects. We distribute the remaining
r − 1 objects into the n − 1 boxes, and there are S(r − 1, n − 1) ways to do so by
definition. For (ii), we have r − 1 objects left to distribute into n identical boxes. a1

can be distributed into either of the boxes, and so there are a total of nS(r − 1, n) ways
to do so.

As the two cases are mutually exclusive, the result follows by the addition principle.

Proposition 1.12 (distribution of distinct objects into identical boxes). Suppose
r, n ∈ Z≥0, where 0 ≤ n ≤ r. We have two cases.

(i) Case 1: S (r, n) is defined as the number of ways of distributing r objects
into n identical boxes such that no box is empty.
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(ii) Case 2: If we have r objects and n boxes and each box can hold any number
of objects, the number of ways to distribute the objects is

S (r, 1) + . . . + S (r, n) .

Before we discuss the distribution of identical objects into identical boxes, we first
define a partition of an integer.

Definition 1.5 (partition). We define a partition of a positive integer r into n

parts to be a set of n positive integers whose sum is r. The ordering of the integers
in the collection is immaterial since the integers are regarded as identical objects.

Let the number of different partitions of n be denoted by P (r, n).

Proposition 1.13 (distribution of identical objects into identical boxes). Given r, n ∈
Z≥0, where 0 ≤ n ≤ r, P (r, n) is the number of ways of r identical objects into n

identical boxes.

Proposition 1.14. Here is a useful recurrence relation for P (r, n), which is

P (r, n) = P (r − 1, n − 1) + P (r − n, n) ,

where r, n ∈ N, 1 < n ≤ r and r ≥ 2n.

Proof. We consider two cases, namely (i) at least one box has exactly one object and
(ii) all the boxes have more than one object.

For (i), we place one object in one box. Then we distribute the remaining r − 1 objects
into the remaining n − 1 boxes such that no boxes are empty. The number of ways this
can be done is P (r − 1, n − 1). For (ii), we place one object into each of the n boxes.
Then we distribute the remaining r − n objects into the n boxes such that each box
has at least two objects. The number of ways this can be done is P (r − n, n). By the
addition principle, the result follows.

A Diophantine equation is a polynomial equation, usually involving two or more
unknowns, such that the only solutions of interest are the integer ones. A linear
Diophantine equation equates to a constant the sum of two or more monomials, each of
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degree one. That is, for constants ai and b and variables xi, where 1 ≤ i ≤ n,

aixi + a2x2 + . . . + anxn = b.

There are
(n−1

r−1
)

distinct positive integer-valued vectors (x1, x2, . . . , xr) that satisfy the
equation

x1 + x2 + . . . + xr = n,

where xi > 0 for 1 ≤ i ≤ r. Note that this is the equivalent of the distribution of r

identical objects into n distinct boxes, where r, n ∈ N, such that no box is empty.

Proposition 1.15. There are
(r+n−1

r−1
)

distinct non-negative integer-valued vectors
(x1, x2, . . . , xr) that satisfy the equation

x1 + x2 + . . . + xn = r where xi ≥ 0 for 1 ≤ i ≤ r.

Proof. Let yi = xi + 1, then each of the yi’s is positive, implying that the number of
non-negative solutions to

x1 + x2 + . . . + xn = r

is the same as the number of positive solutions to

(y1 − 1) + (y2 − 1) + . . . + (yr − 1) = n,

or equivalently,
y1 + y2 + . . . + yr = n + r,

which is
(r+n−1

r−1
)
.

Here is a relatively easy problem.
Example 1.14 (SMO Open 2022 Question 18). Find the number of integer solutions to
the equation x1 + x2 − x3 = 20 with x1 ≥ x2 ≥ x3 ≥ 0.

Solution. We proceed with some casework. First, set x3 = 0. Then, we have x1 + x2 = 20,
where x1 ≥ x2 ≥ 0. There are 10 solutions for this case, namely

(x1, x2) = (20, 0), (19, 1), . . . , (10, 10).

For the second case, set x3 = 1. Then, we have x1 + x2 = 21. There are 10 solutions for
this case, namely

(x1, x2) = (20, 1), (19, 2), . . . , (11, 10).

We repeat this process until x3 = 20, which implies that x1 + x2 = 40, where x1 ≥ x2 ≥
20. There is only one solution for this. If one considers the cases in between these, you
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can spot a pattern, which implies that the total number of solutions is 11 + 2 · 10 + 2 ·
9 + . . . + 2 · 1 = 121. □

Example 1.15 (SMO Open 2007 Question 6). Find the number of non-negative solutions
to the following inequality:

x + y + z + u ≤ 20

Solution. Using the substitution v = 20 − (x + y + z + u), then v ≥ 0 if and only if x +
y + z + u ≤ 20. The required answer is the number of non-negative integer solutions to
the equation

x + y + z + u + v = 20,

which is
(24

4
)

= 10626. □

Example 1.16 (Ross p. 31 Question 15). Let Hk(n) be the number of vectors (x1, . . . , xk)
for which each xi is a positive integer satisfying x1 ≤ x2 ≤ · · · ≤ xk ≤ n.

(i) Prove that H1(n) = n, and

Hk(n) =
n∑

i=1
Hk−1(i) for k ≥ 2.

(ii) Give a direct combinatorial proof that Hk(n) =
(n+k−1

k

)
.

Solution.
(i) H1(n) denotes the number of vectors (x1) for which 1 ≤ x1 ≤ n. Clearly, there

are n choices, so H1(n) = n. We then establish the recurrence relation. Suppose
xk = i. Then, (x1, . . . , xk−1) satisfies 1 ≤ x1 ≤ x2 ≤ . . . ≤ xk−1 ≤ i. Hence, there
are Hk−1(i) choices for (x1, . . . , xk−1). Summing over the possible values of xk = i

from 1 to n gives

Hk(n) =
n∑

i=1
Hk−1(i).

(ii) Observe that specifying a vector 1 ≤ x1 ≤ . . . ≤ xk ≤ n is equivalent to choosing
a multiset of size k from {1, . . . , n}. The number of k-element multisets selected
from an n-element ground set is (

n + k − 1
k

)
,

which yields the required result.
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Chapter 2

Axioms of Probability

2.1 Axioms

The basic terminologies of Probability Theory, including experiment, outcomes,
sample space, events, should be covered in secondary school so we shall not discuss
them here. We will define the probability of an event and show how it is computed using
a variety of examples.

The Kolmogorov axioms are named after Russian mathematician Andrey Kolmogorov.
There are numerous Russian mathematicians who contributed to the field of Probability
and Statistics. Some include Andrey Markov, who is known for Markov’s Inequality
and Markov chains, Nikolai Smirnov, for which the Kolmogorov-Smirnov test, a non-
parametric test (may be covered in ST2132), is named after him and Kolmogorov, as well
as Pafnuty Chebyshev. Chebyshev’s inequality and the Chebyshev polynomials of the
first kind and the second kind are named after him. Not to mention, he also contributed
to the much celebrated prime number theorem.

Axiom 2.1 (Kolmogorov axioms).
(i) Axiom 1: For any event A, 0 ≤ P (A) ≤ 1.

(ii) Axiom 2: Let S be the sample space. Then, P (S) = 1.
(iii) Axiom 3: For any sequence of mutually exclusive events A1, A2, . . . (i.e.

AiAj = ∅ whenever i ̸= j),

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).

Theorem 2.1 (Boole’s inequality). For a countable set of events A1, A2, . . .,

P

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

P (Ai).

The generalisation of Boole’s inequality (Theorem 2.1) is Bonferroni’s inequality.
Example 2.1 (ST2131 AY24/25 Sem 1 Lecture 1). A dice is biased, with the even numbers
being equally likely to appear but each odd number is twice as likely to appear as any
of the even numbers.
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(a) Find the probability of obtaining a 3.
(b) Find the probability of obtaining a 1 or 6.

Solution.
(a) Let Po and Pe denote the probability of an odd and an even value showing up

respectively. Assuming that the die ranges from 1-6, by the Kolomogrov axioms
(Axiom 2.1),

Po = 2Pe and3Po + 3Pe = 1.

Solving the above yields Po = 2/9.
(b) We have Po + Pe = 1/9 + 2/9 = 1/3.

Example 2.2 (ST2131 AY24/25 Sem 1 Lecture 1).
(a) Three fair coins are tossed. What is the probability that exactly two heads appear?
(b) Four fair coins are tossed. What is the probability that at least two heads appear?

Solution.
(a) There are a total of 23 = 8 possible outcomes. Choose two of the three coins to be

fixed as heads, then the last coin must be a tail. Since any two of the three coins
could be chosen to be heads, there are

(3
2
)

possible cases. The required probability
is
(3

2
)
/23 = 3/8.

(b) The total number of outcomes is 24. The desired outcomes are 2, 3 or 4 heads.
Hence,

P =
(4

2
)

+
(4

3
)

+
(4

4
)

24 = 11
16 .

Example 2.3 (Ross p. 68 Question 3). A deck of cards is dealt out. What is the probability
that the 14th card dealt is an ace? What is the probability that the first ace occurs on
the 14th card?

Solution. Note that a regular deck of cards has 52 cards. We first compute the probability
that the 14th card dealt is an ace. By symmetry, any card is equally likely to be dealt,
so the required probability is 4

52 = 1
13 .

The probability that the first ace occurs on the 14th card is

48
52 · 47

51 · . . . · 36
40 · 4

39 = 48!/35!
52!/38! · 4 = 38 · 37 · 36

52 · 51 · 50 · 49 · 4 ≈ 0.312.

□

Example 2.4 (Ross p. 68 Question 5). An ordinary deck of 52 cards is shuffled. What is
the probability that the top four cards have
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(a) different denominations?
(b) different suits?

Solution.
(a) We will first compute the total outcomes, which is(

52
4

)
= 270725.

Let A be the event the top 4 cards will be of different domination, then we have

P (A) =
(13

4
)

× 44

270725 ≈ 0.676.

(b) Let B be the event the top 4 cards will be of different suits, then we have

P (B) = 134

270725 ≈ 0.105.

Example 2.5. A standard deck of 52 cards is dealt out randomly to 4 players, each
getting 13 cards. The picture cards are the J, Q, K of each suit. What is the probability
that each player receives exactly three picture cards?

Solution. The probability that player 1 receives exactly three picture cards is(
12
3

)(
40
10

)
(

52
13

) .

The probability that player 2 receives exactly three picture cards is(
9
3

)(
30
10

)
(

39
13

)

and so on. As such, the desired probability is(
12
3

)(
9
3

)(
6
3

)(
3
3

)
·
(

40
10

)(
30
10

)(
20
10

)(
10
10

)
(

52
13

)(
39
13

)(
26
13

)(
13
13

) =

12!
(3!)4 · 40!

(10!)4

52!
(13!)4

≈ 0.0324.

□
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Example 2.6 (Ross p. 69 Question 17). Five balls are randomly chosen without
replacement from an urn that contains 5 red, 6 white and 7 blue balls. Find the
probability that at least one ball of each colour is chosen.

Solution. The partitions of 5 into three distinct parts are

(R, W, B) = (3, 1, 1) , (2, 2, 1) , (1, 2, 2) , (2, 1, 2) , (1, 3, 1) , (1, 1, 3) .

So the probability is (
5
3

)(
6
1

)(
7
1

)
(

18
5

) + . . . +

(
5
1

)(
6
1

)(
7
3

)
(

18
5

) ≈ 0.707.

□

Example 2.7. A committee of 4 persons is to be formed from a group of 5 men and 4
women, among which there is a husband-wife couple.

(i) How many committees are possible?
(ii) If the committee must have 2 men and 2 women, how many committees are

possible?
(iii) If the committee must have 2 men and 2 women, and the couple is not allowed to

serve together, how many committees are possible?
Solution.

(i) The number of committees is
(9

4
)

= 126.
(ii) By the multiplication rule, the number of possible committees is

(5
2
)(4

2
)

= 60.
(iii) We use the principle of complementation. Consider the case when we choose 2 men

and 2 women, where one of the men-women pairs is the husband-wife couple. To
do this, there are

(4
1
)(3

1
)

= 12 ways, so the desired number of ways is 60 − 12 = 48,
where we used (ii).

Example 2.8 (Ross p. 69 Question 8). From a group of 3 first-year students, 4 sophomores,
4 juniors, and 3 seniors, a committee of size 4 is randomly selected. Find the probability
that the committee will consist of

(a) 1 from each class
(b) 2 sophomores and 2 juniors
(c) only sophomores or juniors

Solution.
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(a) We will first compute the total outcomes, which is(
14
4

)
= 1001.

Let A be the event 1 from each class is chosen, then we have

P (A) =
(3

1
)

×
(4

1
)

×
(4

1
)

×
(3

1
)

1001 ≈ 0.144.

(b) Let B be the event 2 sophomores and 2 juniors are chosen, then we have

P (B) =
(4

2
)

×
(4

2
)

1001 ≈ 0.0360.

(c) Let C be the event only sophomores or juniors chosen, then we have

P (C) =
(8

4
)

1001 = 0.0699

Example 2.9 (Ross p. 69 Question 18). 4 red, 8 blue, and 5 green balls are randomly
arranged in a line.

(a) What is the probability that the first 5 balls are blue?
(b) What is the probability that none of the first 5 balls is blue?
(c) What is the probability that the final 3 balls are of different colours?
(d) What is the probability that all the red balls are together?

Solution.
(a) The number of arrangements without restriction is 17!

4!8!5! . We then fix 5 blue balls
in front in

(8
5
)

ways, then arrange the remaining balls in 12!
4!3!5! ways. The required

probability is
12!8!
3!17! = 2

221 .

(b) To have no blue there, you must choose all five from the 9 non-blue balls (4 red
and 5 green), which can be done in

(9
5
)

ways. So, the desired probability is
(9

5
)(17

5
) = 9

442 .

(c) The number of arrangements is 3! · 14!
3!7!4! . So, the desired probability is

4
17 .
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(d) The number of ways to arrange such that the red balls are together is 14!
8!5! . The

desired probability is
14!4!8!5!
8!5!17! = 1

170

Example 2.10 (ST2131 AY24/25 Sem 2 Tutorial 2). A closet contains 10 pairs of shoes.
If 8 shoes are randomly selected, what is the probability that there will be

(a) no complete pair;
(b) exactly 1 complete pair?

Solution.
(a) From the 10 pairs of shoes, we choose 8. Within each pair, we choose one of the

shoes each time so by the multiplication principle (Definition 1.2), there are(
10
8

)
· 28 ways to obtain no complete pairs.

As such, the desired probability is (10
8
)

· 28(20
8
) .

(b) We first fix the pair of shoes that is a complete pair. There are
(10

1
)

ways to choose
such a pair. Thereafter, we have 9 pairs of shoes left and we wish to choose 6.
Within each pair, we choose one of the shoes each time so by the multiplication
principle (Definition 1.2), there are(

10
1

)(
9
6

)
· 26 ways to obtain exactly one complete pair.

The desired probability is (10
1
)(9

6
)

· 26(20
8
) .

Example 2.11 (Ross p. 69 Question 12). A basketball team consists of 6 frontcourt and
4 backcourt players. If the players are divided into roommates at random, what is the
probability that there will be exactly two roommate pairs made up of a backcourt and
a frontcourt player?

Solution. The possible number is pairs is(
10
2

)(
8
2

)
. . .

(
2
2

)
· 1

5! = 945.
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To have exactly two roommate pairs made up of a backcourt and a frontcourt player,
the number of ways is(

6
1

)(
4
1

)(
5
1

)(
3
1

)
·
(

4
2

)(
2
2

)(
2
2

)
· 1

2!2! = 540.

The required probability is 540
945 = 4

7 . □

Example 2.12. A group of 9 gamers are playing computer games.
(a) The first game consists of three different tasks presented at the same time.

The gamers divide themselves into three groups of 3 to work on the problems
simultaneously. How many divisions are possible?

(b) The second game requires three teams to play simultaneously, each team against
the other two. The gamers divide themselves into three groups of 3 to play this
game. How many divisions are possible?

Solution.
(a) We have (

9
3, 3, 3

)
= 9!

3!3!3! = 1680.

(b) Note that we have 3! arrangements of group label permutations. Hence
1680

3! = 280.

Example 2.13 (Ross p. 69 Question 19). Ten cards are randomly chosen from a deck of
52 cards that consists of 13 cards of each of 4 different suits. Each of the selected cards
is put in one of 4 piles, depending on the suit of the card.

(a) What is the probability that the largest pile has 4 cards, the next largest has 3,
the next largest has 2 and the smallest has 1 card?

(b) What is the probability that two of the piles have 3 cards, one has 4 cards and one
has no cards?

Solution.
(a) Note that

|S| =
(

52
10

)
.

Let A denote the desired event. Then,

P (A) =

(
13
4

)(
13
3

)(
13
2

)(
13
1

)
· 4!(

52
10

) .
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(b) Let B denote the desired event. Then,

P (B) =

(
13
3

)(
13
3

)(
13
4

)(
13
0

)
· 4!

2!(
52
10

) .

Example 2.14 (ST2131 AY24/25 Sem 2 Tutorial 4). Prove that if E1, . . . , En are
independent events, then

P (E1 ∪ . . . ∪ En) = 1 −
n∏

i=1
[1 − P (Ei)] .

Solution. Recall de Morgan’s law, which states that

P (A1 ∪ A2) = 1 − P (Ac
1 ∩ Ac

2) .

We can generalise this to n sets, i.e.

P (E1 ∪ . . . En) = 1 − P (Ec
1 ∩ . . . ∩ Ec

n) = 1 −
n∏

i=1
P (Ec

i )

and the result follows, where we used the fact that E1, . . . , En are independent (to be
precise, mutually independent; see Definition 3.3) in the last equality. □

2.2 Probability Properties

Using Kolmogorov’s axioms, we can derive a few useful properties such as de Morgan’s
laws and the probability of the complement of an event, where the complement is
usually denoted by A′ or Ac, where P (A) + P (A′) = 1. In particular, we shall discuss
the principle of inclusion and exclusion.

Proposition 2.1 (principle of inclusion and exclusion). If we have n events
A1, A2, . . . , An,

P

(
n⋃

i=1
Ai

)
=

n∑
i=1

P (Ai) −
∑

1≤i<j≤n

P (Ai ∩ Aj) + . . . + (−1)n+1
P

(
n⋂

i=1
Ai

)
.

One would generally be more familiar with the principle of inclusion and exclusion
for two events. Say we have two events A and B. Then,

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) .
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This can be illustrated using a Venn diagram. If we have three events A, B and C, then

P (A ∪ B ∪ C) = P (A) + P (B) + P (C) − P (A ∩ B) − P (A ∩ C) − P (B ∩ C) + P (A ∩ B ∩ C).

Example 2.15 (ST2131 AY24/25 Sem 1 Lecture 1). In a large sports club,
• 40% of members play badminton
• 35% of members play squash
• 10% of members play both

Find the probability that a randomly selected member plays neither of the two sports
mentioned above.

Solution. By the principle of inclusion and exclusion, the answer is 1 −
(0.4 + 0.35 − 0.1) = 0.35. □

Example 2.16 (ST2131 AY24/25 Sem 1 Lecture 1). Suppose you assess that there is
more than 85% chance that the weather will be nice tomorrow, and there is more than
65% chance that the weather will be nice the day after tomorrow. Is it valid to infer that
there is more than a fair chance that the weather will be nice on both days?

Solution. Valid. Let E and F denote the first and second events written above
respectively. Then,

P (E ∪ F ) = P (E) + P (F ) − P (E ∩ F ) which implies P (E ∩ F ) = P (E) + P (F ) − P (E ∪ F ) .

Since P (E) > 0.85, P (F ) > 0.65, and P (E ∪ F ) ≤ 1, it follows that P (E ∩ F ) > 0.5.
□

Example 2.17 (ST2131 AY24/25 Sem 1 Lecture 1). Similar to Example 2.16, suppose
you assess that there is more than 80% chance that the weather will be nice tomorrow
and there is more than 80% chance that the weather will be nice the day after tomorrow.
Is it valid to infer that there is more than 80% chance that the weather will be nice on
both days?

Solution. Invalid. Again, let E and F denote the first and second events written above
respectively. Then,

P (E ∩ F ) > 0.8 + 0.8 − 1 = 0.6.

However, we cannot conclude that there is more than an 80% chance that the weather
will be nice on both days. □

Example 2.18. In a large language school where students take classes in Chinese,
Japanese, Korean, and other languages,
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• 51% of students are enrolled in the Chinese class;
• 40% of students are enrolled in the Japanese class;
• 32% of students are enrolled in the Korean class;
• 14% of students are enrolled in both Chinese and Japanese classes;
• 17% of students are enrolled in both Chinese and Korean classes;
• 10% of students are enrolled in both Japanese and Korean classes;
• 3% of students are enrolled in Chinese, Japanese, and Korean classes

A student of the school is randomly selected. What is the probability that the selected
student is enrolled in none of the three languages mentioned above?

Solution. Let C, J, K denote the events that a student is enrolled in the Chinese,
Japanese, and Korean class respectively. By de Morgan’s law,

P
(
C ′ ∩ J ′ ∩ K ′) = 1 − P (C ∪ J ∪ K) .

We then use the principle of inclusion and exclusion, so

P (C ∪ J ∪ K) = P (C) + P (J) + P (K) − P (C ∩ J) − P (C ∩ K) − P (J ∩ K) + P (C ∩ J ∩ K) .

Substituting the relevant probabilities yields

P (C ∪ J ∪ K) = 0.51 + 0.40 + 0.32 − 0.14 − 0.17 − 0.10 + 0.03 = 0.85

so the desired probability is 0.15. □

Example 2.19 (H3 Mathematics 2020). Let

X = {1, 2, . . . , m} and Y = {1, 2, . . . , n} be sets of positive integers

and f be a function mapping from X to Y . f is called one-to-one if no two elements
of X map to the same element of Y , and f is called onto if each element of Y is the
image of an element of X. For m ≥ n, we wish to find an expression for the number of
functions mapping X to Y which are onto.

Solution. Let Ai be the event denoting the element ni ∈ Y which does not get mapped
from any element in X, where 1 ≤ i ≤ n. We wish to find∣∣A′

1 ∩ A′
2 ∩ . . . ∩ A′

n

∣∣ ,
which is equivalently, by de Morgan’s law,

n (S) −
∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ .
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Note that
n∑

i=1
|Ai| =

(
m

1

)
(m − 1)n

∑
1≤i<j≤n

|Ai ∩ Aj | =
(

m

2

)
(m − 2)n

∑
1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak| =
(

m

3

)
(m − 3)n

and so on. It is clear that n(S) = mn. Using the principle of inclusion and exclusion,∣∣∣∣∣
n⋃

i=1
Ai

∣∣∣∣∣ =
n∑

i=1
|Ai| −

∑
1≤i<j≤n

|Ai ∩ Aj | +
∑

1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak| + . . . +
(

m

m

)
(m − m)n

∣∣∣∣∣
n⋃

i=1
Ai

∣∣∣∣∣ =
m∑

r=0
(−1)r+1

(
m

r

)
(m − r)n

∣∣A′
1 ∩ A′

2 ∩ . . . ∩ A′
n

∣∣ =
m∑

r=0
(−1)r

(
m

r

)
(m − r)n

which is the required expression. □

Definition 2.1 (derangement). A derangement is a permutation of the elements of
a set, such that no element appears in its original position. If a set has n elements,
then its derangement is denoted by Dn or !n.

Example 2.20 (hat-check problem). A group of n men enter a restaurant and check in
their hats at the reception. The hat-checker is absent-minded, and upon leaving, he
redistributes the hats to the men randomly. Suppose Dn is the number of ways such
that no men get his own hat. For n ≥ 3, prove that Dn satisfies the following recurrence
relation:

Dn = (n − 1)(Dn−1 + Dn−2)

with initial conditions D1 = 0 and D2 = 1.

Solution. Suppose the first person receives the ith person’s hat, where i ̸= 1. There are
n − 1 ways to do so. We consider two cases, namely (i) the ith person received hat 1 and
(ii) the ith person received a hat that is not hat 1.

For (i), ignoring the first and ith person, there are Dn−2 ways to arrange the n − 2
hats among the n − 2 people such that no one received his own hat. For (ii), treating
the ith person as the first person, this is equivalent to arranging the n − 1 hats among
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n − 1 people such that no one received his own hat. There are Dn−1 ways to do so. The
result follows. □

By repeatedly applying the recurrence relation or simply using induction, we can
establish that

Dn = nDn−1 + (−1)n

for n ≥ 2. We can find a formula for Dn in terms of a sum. This involves considering a
new expression, namely Dn = n!Pn. Thus,

n!Pn = n!Pn−1 + (−1)n

Pn =
n∑

i=2

(−1)i

i!

by the method of difference. In conclusion,

Dn = n!
n∑

i=0

(−1)i

i! .

We can also prove this result by the principle of inclusion and exclusion.

For large values of n, Pn tends to e−1. This can be proven by the Maclaurin Series
of ex, namely

ex =
∞∑

i=0

xi

i! .

□

We recall the example from the H3 Mathematics 2020 paper (Example 2.19).
Example 2.21 (derangement). Five couples are being seated at a long table. The five
women are seated first, along one side of the table. The five men are then assigned seats
along the other side, at random. What is the probability that none of the couples end
up facing each other?

Solution. Let Ei denote the event where the ith couple end up facing each other. Let A

denote the event where none of the couples face each other, then A = E′
1 ∩ . . . ∩ E′

5. The
complement of A is A′ = E1 ∪ . . . ∪ E5. By the principle of inclusion and exclusion,

P (A) = 1 −
( 1

1! − 1
2! + 1

3! − 1
4! + 1

5!

)
.

□
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Example 2.22 (ST2131 AY24/25 Sem 1 Lecture 3). Four couples are seated randomly at
a round table. What is the probability that at least one of the couples end up sitting
next to each other?

Solution. There are a total of (8 − 1)! = 7! possible outcomes. Define Ei to be event
where the ith couple sits next to each other. Let A = E1 ∪ . . . ∪ E4. By the principle of
inclusion and exclusion, we have

P (A) =
∑
i=1

P (Ei) −
∑
i<j

P (Ei ∩ Ej) +
∑

i<j<k

P (Ei ∩ Ej ∩ Ek) − P (E1 ∩ E2 ∩ E3 ∩ E4) .

In general, we have

P (Ei1 ∩ . . . ∩ Ein) = (7 − n)! × 2n

(8 − 1)! .

By the principle of inclusion and exclusion,

P
(
A′) = 1 −

( 4∑
i=1

(−1)i+1
(

4
i

)
(7 − i)! × 2i

(8 − 1)!

)
= 31

105 .

□

We can generalise Example 2.22. The number of ways cn to seat n couples around a
round table with no spouses next to each other is given by

cn =
n∑

i=0
(−1)i 2i

(
n

i

)
(2n − i − 1)!.

The first few values of cn for n = 1, . . . , 8 are

0, 2, 32, 1488, 112 512, 12 771 840 which appears as sequence A129348 in the OEIS.

This sequence is known as the number of directed Hamiltonian circuits in the cocktail
party graph (appears in the handshake lemma) of order n.
Example 2.23 (H3 Mathematics 2020). Let

X = {1, 2, . . . , m} and Y = {1, 2, . . . , n} be sets of positive integers

and f be a function mapping from X to Y . f is called one-to-one if no two elements
of X map to the same element of Y , and f is called onto if each element of Y is the
image of an element of X. Now, for m = n = 5, find the number of one-to-one functions
mapping from X to Y which map no element to itself.
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Solution. We shall use the principle of inclusion and exclusion to assist us. Let Ai be the
set of permutations in which the ith element goes into the right position, where 1 ≤ i ≤ 5.
Note that |Ai| = 4!, |Ai ∩ Aj | = 3! and so on. Hence, using the principle of inclusion and
exclusion, the number of derangements, D5, is

D5 = 5! −
∣∣∣∣∣

5⋃
i=1

Ai

∣∣∣∣∣
= 5! −

5∑
i=1

|Ai| +
5∑

1≤i<j≤5
|Ai ∩ Aj | + . . . + (−1)5

∣∣∣∣∣
5⋂

i=1
Ai

∣∣∣∣∣
= 5! −

(
5
1

)
4! +

(
5
2

)
3! −

(
5
3

)
2! +

(
5
4

)
1! −

(
5
5

)
0!

= 44

Alternatively, using the derangement formula will yield the same result. □

Example 2.24 (birthday problem/paradox). The birthday problem asks for the probability
that, in a set of n randomly chosen people, at least two will share a birthday. The birthday
paradox is that, counter-intuitively, the probability of a shared birthday exceeds 50% in
a group of only 23 people. The probability that at least two of the n persons share the
same birthday, denoted by p(n), can be expressed as

p (n) = 1 − 365!
365n (365 − n)! = 1 − n!

365n

(
365
n

)
.

Note that n ≤ 365; if n ≥ 366, we obtain a contradiction by the pigeonhole principle.
As p(22) = 0.47569 and p(23) = 0.50729, it asserts that the statement is true. We provide
a proof for this.

Solution. A person can have his/her birthday on any of the 365 days. There are a total
of 365n outcomes. Let A denote the event that there at least two people among the n

people sharing the same birthday. Then, A′ is the event that none of them shares the
same birthday. Without a loss of generality, treating each person as an object and each
date as a box, the first person can go into the first day in 365 ways. The second person
can go into the second day in 364 ways and so on, till the nth person goes into the nth

day in 366 − n ways. Hence,

P (A′) = 365 · 364 · 363 · . . . · (366 − n)
365n

.
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Since 1 − P (A′) = P (A) = p(n), then

p(n) = 1 − 365 · 364 · 363 · . . . · (366 − n)
365n

= 1 − 365!
365n (365 − n)!

= 1 − n!
365n

(
365
n

)

□

Example 2.25 (ST2131 AY24/25 Sem 1 Lecture 2; modified birthday paradox). Assume
that the students in a large class are equally likely to have their birthdays fall on any of
the 7 days of the week.

What is the smallest integer n such that, in a group of n students randomly selected
from this class, there is more than 60% chance for at least two of them to have their
birthdays fall on the same day of the week?

Solution. We have a trivial upper bound of n ≤ 8 because there are only 7 days in a
week. We find P (A′

n), which is the probability that each student in a group of n students
has a different day in a week for their birthday.

For n = 1, it is trivial. Also,

P
(
A′

2
)

= 7 × 6
72 and P

(
A′

3
)

= 7 × 6 × 5
73 .

One can generalise the above — for any n ≤ 8,

P
(
A′

n

)
= 7 × . . . × (7 − n + 1)

7n
.

We accept this without proof for now. Then by computation, we find that n ≥ 4 satisfies
the inequality 1 − P (A′

n) > 0.6. □

Example 2.26 (ST2131 AY24/25 Sem 1 Lecture 2; modified birthday paradox). Assume
that the students in a large class are equally likely to have their birthdays fall on any of
the 12 months of the year.

What is the smallest integer n such that, in a group of n students randomly selected
from this class, there is more than 60% chance for at least two of them to have their
birthdays fall on the same month for their birthday?
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Solution. Likewise (compare with Example 2.25), we should have an upper bound of
n ≤ 13. We use a similar strategy — consider the event where n students all have different
months of their birthday. Then,

P
(
A′

n

)
= 12 × . . . × (12 − n + 1)

12n
for any n ≤ 13.

Solving the inequality 1 − P (A′
n) > 0.6 gives us n ≥ 5. □

2.3 Probability as a Continuous Set Function

Definition 2.2 (increasing and decreasing sequences). A sequence of events En,
n ≥ 1, is an increasing sequence if

E1 ⊆ E2 ⊆ . . . ⊆ En ⊆ En+1 ⊆ . . .

whereas it is a decreasing sequence if

E1 ⊇ E2 ⊇ . . . ⊇ En ⊇ En+1 ⊇ . . .

If En, n ≥ 1, is an increasing sequence of events, then we define the following new
event:

lim
n→∞

En =
∞⋃

i=1
Ei

Similarly, if En, n ≥ 1, is a decreasing sequence of events, then we define the following
new event:

lim
n→∞

En =
∞⋂

i=1
Ei

Proposition 2.2. If En, where n ≥ 1, is either an increasing or a decreasing
sequence of events, then

lim
n→∞

P (En) = P
(

lim
n→∞

En

)
.

Example 2.27 (Ross p. 67 Question 5). For any sequence of events E1, E2, . . . , define a
new sequence F1, F2, . . . of disjoint events (that is, events such that FiFj = ∅ whenever
i ̸= j) such that for all n ≥ 1,

n⋃
1

Fi =
n⋃
1

Ei.
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Solution. We can define

F1 = E1, and Fn = En\
n−1⋃
j=1

Ej for n ≥ 2

such that if m < n, Fm ⊆ Em and Fn is disjoint from all earlier Ej such that Fm ∩ Fn = ∅.
We will now verify the union property holds.

For the forward inclusion, suppose x ∈
⋃n

1 Fi, then x ∈ Fi for some 1 ≤ i ≤ n. Since
Fi ⊆ Ei, x ∈ Ei thus x ∈

⋃n
1 Ei. For the reverse inclusion, suppose x ∈

⋃n
1 Ei, then x ∈ Ei

for some 1 ≤ i ≤ n. Let k be the smallest index with x ∈ Ek, then x ̸∈ Ej for j < k. As
such x ∈ Fk and thus x ∈

⋃n
1 Fi. □
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Chapter 3

Conditional Probability and Independence

3.1 Conditional Probabilities

Definition 3.1 (conditional probability). Let A and B be two events. The
conditional probability of A given B is defined as

P (A | B) = P (A ∩ B)
P (B) provided that P (B) ̸= 0.

P (A | B) can also be read as the conditional probability of A occurring given that
B has occurred. Since we know that A has occurred, we can now think of A as our new
or reduced sample space.
Example 3.1 (ST2131 AY24/25 Sem 2 Tutorial 3). Suppose that an ordinary deck of 52
cards is shuffled and the cards are then turned over one at a time until the first ace
appears. Given that the first ace is the 20th card to appear, what is the conditional
probability that the card following it is the ace of spades?

Solution. Let

B be the event that the 21st card is the ace of spades and
A be the event that the 20th card is the first ace

We wish to compute P (B | A). By Definition 3.1, this is equal to
P (B ∩ A)

P (A) .

P (B ∩ A) is the probability that the 20th card is the first ace and the 21st card is the
ace of spades. We proceed with casework. If the 20th card is the ace of spades, then this
contributes 0 to the probability. On the other hand, if the 20th card is some other type
of ace (i.e. diamonds, clubs, hearts), then the first 19 cards must be non aces. Hence,
this contributes a probability of

48
52 · 47

51 · . . . · 30
34 .

For the 20th card to be an ace but of some other type, we then multiply by 3/33. Lastly,
for the 21st card to be the ace of spades, we multiply by 1/32. As such,

P (B ∩ A) = 0 +
(48

52 · 47
51 · . . . · 30

34

)
· 3

33 · 1
32 .
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P (A) is the probability that the 20th card is the first ace, which is(48
52 · . . . · 30

34

)
· 4

33 .

Hence, P (B | A) = 3/128. □

Example 3.2. From a standard deck of cards, we take the twelve picture cards (i.e. the
J, Q, K of each suit) and leave out the other cards. These 12 cards are then shuffled at
random and dealt out to 4 players (each getting 3 cards).

(a) What is the probability that the king of spades and the king of clubs are with
different players?

(b) What is the probability that the king of spades, the king of clubs and the king of
hearts are with different players?

(c) What is the probability that the four king cards are with different players?
Solution.

(a) Think of the 12 cards arranged as 4 hands of 3 cards each as follows:

(A1, A2, A3) , . . . , (D1, D2, D3)

Place K♠ anywhere, say in a slot belonging to A. Then, K♣ can go into any of
B1, . . . , D3, which has 9 favourable outcomes. So, the required probability is 9

11 .
(b) We first keep K♠ and K♣ in different hands with probability 9

11 . Given that there
are 10 slots left, the two used hands have 2 + 2 = 4 slots, so the other two hands
have 6 slots. Hence,

P (K♡ in a third hand | first two different) = 6
10 = 3

5 .

Hence, the probability required is

9
11 · 3

5 = 27
55 .

(c) Repeat this one last time — with three kings all in distinct hands, the remaining
slots are 9 total, which the one untouched hand has 3. Thus,

P (K♢ in fourth hand | first three different) = 3
9 = 1

3 .

The required probability is
9
11 · 3

5 · 1
3 = 9

55 .
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Example 3.3 (Ross p. 128 Question 9). You ask your neighbour to water a sickly plant
while you are on vacation. Without water, it will die with probability 0.8; with water,
it ill die with probability 0.15. You are 90 percent certain that your neighbour will
remember to water the plant.

(a) What is the probability that the plant will be alive when you return?
(b) If the plant is dead upon your return, what is the probability that your neighbour

forgot to water it?

Solution:
(a) Let event A be the event that the plant is alive and event B denote that the plant

was watered. Then we have

P (A) = P (A | B) · P (A) + P (A | B) · P (B) = (0.05)(0.9) + (0.2)(0.1) = 0.785.

(b) We have

P (B | A) = P (A ∩ B)
P (A)

= P (A | B)P (B)
1 − P (A) = 0.8 · 0.1

1 − 0.785 .

Proposition 3.1 (generalised multiplication rule). If A1, A2, . . . , An are events, then

P

(
n⋂

i=1
Ai

)
= P (A1) P (A2 | A1) P (A3 | A1 ∩ A2) . . . P

(
An

∣∣∣∣∣
n−1⋂
i=1

Ai

)
.

Proof. Apply the definition of conditional probability (Definition 3.1) to the right side
of the equation to get the following expression:

P (A1) · P (A2 ∩ A1)
P (A1) · P (A3 ∩ A2 ∩ A1)

P (A2 ∩ A1) · . . . ·
P

(
n⋂

i=1
Ai

)
P

(
n−1⋂
i=1

Ai

)
which is clear that it is equal to the left side after some cancellation.

Proposition 3.2. Let A be an event such that P (A) > 0. Then, the following three
statements hold:

(i) For any event B, 0 ≤ P (B | A) ≤ 1.
(ii) P (S | A) = 1
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(iii) Let B1, B2, . . . be a sequence of mutually exclusive events. Then,

P

( ∞⋃
i=1

Bi

∣∣∣∣∣A
)

=
∞∑

i=1
P (Bi|A).

Proof. We first prove (i). As P (A ∩ B) ≥ 0 and P (A) > 0, we prove the lower bound for
P (B | A). To prove P (B | A) ≤ 1, note that B | A ⊆ A, implying that P (A ∩ B) ≤ P (A),
and the result follows.

For (ii), this follows from the fact that

P (S | A) = P (A ∩ S)
P (A)

and since P (A ∩ S) = P (A), the result follows.

Lastly, for (iii),

P

( ∞⋃
i=1

Bi

∣∣∣∣∣A
)

=
P

(
A ∩

∞⋃
i=1

Bi

)
P (A) =

P

(
A ∩

∞⋃
i=1

Bi

)
P (A) =

∞∑
i=1

P (Bi ∩ A)

P (A) =
∞∑

i=1

P (Bi ∩ A)
P (A)

which simplifies to
∞∑

i=1
P (Bi | A).

We now discuss an interesting game known as Penny’s game. This refers to a two-player
combinatorial game in which one player, X, selects a sequence of heads and tails of a
given length (i.e.. three coin flips), and the other player, B, selects a different sequence
of the same length. A fair coin is then flipped repeatedly, and the first player whose
sequence appears in the sequence of flips wins.

This game is particularly interesting because it demonstrates a surprising non-transitive
property. That is, for any sequence chosen by A, B can always pick a sequence that has
a higher probability of appearing first, despite both sequences having the same length.

The optimal strategy in Penny’s game relies on overlapping patterns in sequences.
Example 3.4 (Penny’s game). Say we are given the following 8 patterns:

HHH, HHT, HTH, THH, HTT, THT, TTH, TTT
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Player X picks one of the patterns, and Player Y then picks one of the remaining 7
patterns. A fair coin is tossed repeatedly until either Player X’s pattern appears (X
wins) or Player Y ’s pattern appears (Y wins).

(i) Find P (X wins) if X picks HHT and Y picks THH.
(ii) Find P (X wins) if X picks HTH and Y picks HHT .

Solution.
(i) Let

pX = probability X wins
pH = probability X wins given that previous outcome was H

pHT = probability X wins given that previous outcomes were H then T

... =
...

We note that
pX = 1

2pH + 1
2pT .

Also,

pH = 1
2pHH + 1

2pHT

We note that pHT = pT . The reason is as follows: the first two outcomes that X

and Y pick are HH are TH respectively. Since neither outcome is HT , then we
can effectively ignore the first outcome, which is H, and analyse the remaining
sequence from that point onward. Hence,

pH = 1
2pHH + 1

2pT

= 1
2 + 1

2

(1
2pT H + 1

2pT T

)
since pHH = 1

= 1
2 + 1

4pT H + 1
4pT T

We shall talk our way through these coloured probabilities. Before that, note we
mentioned that pHH = 1. This is because

pHH = 1
2pHHH + 1

2pHHT = 1
2pHH + 1

2 · 1 = 1
2 + 1

2pHH .

Here, we used the fact that pHHT = 1. As such, pHH = 1. Intuitively, once X

obtains the sequence HH, in the long run, no matter the subsequent outcomes,
there exists a sequence of HHT .
• We have pT H = 1

2pT HT + 1
2pT HH . Since Y wins (so X loses) upon obtaining the

sequence THH, then pT HH = 0. Also, pT HT = pT H = pT . As such, pT H = 1
2pT .
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• We have

pT T = 1
2pT T T + 1

2pT T H = 1
2pT + 1

2pT H = 1
2pT + 1

4pT = 3
4pT

As such,

pH = 1
2 + 1

4 · 1
2pT + 1

4 · 3
4pT = 1

2 + 5
16pT .

We now determine the value of pT . Note that

pT = 1
2pT H + 1

2pT T

= 1
2

(1
2pT HH + 1

2pT HT

)
+ 1

2

(1
2pT T H + 1

2pT T T

)
= 1

2

(1
2 · 0 + 1

2pT

)
+ 1

2

(1
2pT H + 1

2pT

)
= 1

4pT + 1
4pT H + 1

4pT

= 1
4pT + 1

4 · 1
2pT + 1

4pT

= 5
8pT

Clearly, pT = 0. As such,

pH = 1
2 + 5

16 · 0 = 1
2

so we conclude that pX = 1/4.
(ii) We use the same notation in (i). Similarly, we have

pX = 1
2pH + 1

2pT .

Hence,

pX = 1
2

(1
2pHH + 1

2pHT

)
+ 1

2

(1
2pT H + 1

2pT T

)
Note that pHH = 0 since no matter what sequence of outcomes appear after HH,
there eventually exists a sequence of HHT , making Y win. So,

pX = 1
4pHT + 1

4pT H + 1
4pT T

= 1
4

(1
2pHT H + 1

2pHT T

)
+ 1

4

(1
2pT HH + 1

2pT HT

)
+ 1

4

(1
2pT T H + 1

2pT T T

)
= 1

4

(1
2 · 1 + 1

2pT

)
+ 1

4

(1
2 · 0 + 1

2pHT

)
+ 1

4

(1
2pH + 1

2pT

)
= 1

8 + 1
4pT + 1

8pHT + 1
8pH
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Note that
pHT = 1

2pHT H + 1
2pHT T = 1

2pH + 1
2 · 1 = 1

2pH + 1
2 .

So,
pX = 1

8 + 1
4pT + 1

8

(1
2pH + 1

2

)
+ 1

8pH .

In the process, we deduced that pH = pT = 1/3 (check this). These imply pH = 2/7
and pT = 1/7. As such, pX = 1/3.

3.2 Bayes’ theorem

Theorem 3.1 (Bayes’ theorem). If A and B are two different events with P (B) ̸= 0,
then

P (A|B) P (B) = P (B|A) P (A) .

Proof. Direct application of Definition 3.1.

We introduce the notion of the partition of a sample space S. We say that
A1, A2, . . . , An are partitions of S if they are mutually exclusive and collectively
exhaustive.

The term mutually exclusive is studied at both O-Level and A-Level Mathematics.
It simply means Ai ∩ Aj = ∅ for all i ̸= j. In relation to probabilities, P (A ∪ B) =
P (A) + P (B), i.e. P (A ∩ B) = 0. The term collectively exhaustive means that

n⋃
i=1

Ai = S.

Example 3.5 (Ross p. 128 Question 6). An urn contains b black balls and r red balls.
One of the balls is drawn at random, but when it is put back in the urn, c additional
balls of the same colour are put in with it. Now, suppose that we draw another ball.
Show that the probability that the first ball was black, given that the second ball dawn
was red is

b

b + r + c
.

Solution. Let A denote the event that the first ball was black and B denote the event
that the second ball drawn was red. Then,

P (A | B) = P (A ∩ B)
P (B) .
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We have
P (A ∩ B) = b

b + r
· r

b + r + c
.

Next,
P (B) = b

b + r
· r

b + r + c
+ r

b + r
· r + c

b + r + c
= r

b + r
.

The result follows. □

Example 3.6 (Ross p. 128 Question 8).
(a) Show that

P (H | E)
P (G | E) = P (H)P (E | H)

P (G)P (E | G) .

(b) Suppose that before new evidence is observed, the hypothesis H is three times
as likely to be true as is the hypothesis G. If the new evidence is twice as likely
when G is true than it is when H is true, which hypothesis is more likely after the
evidence has been observed?

Solution. (a) is trivial by repeatedly applying the definition of conditional probability.
We will only solve (b). It is given that before new evidence

P (H)
P (G) = 3

after new evidence

P (E | H)
P (E | H) = 1

2

By (a),

P (H | G)
P (E | G) = P (H)

P (G) · P (E | H)
P (E | G) = 3

2 > 1

□

We are now ready to state the law of total probability.

Proposition 3.3 (law of total probability). Suppose the events A1, A2, . . . , An are
partitions of S. Assume further that P (Ai) > 0 for all 1 ≤ i ≤ n. Let B be any
event. Then,

P (B) = P (B | A1) P (A1) + P (B | A2) P (A2) + . . . + P (B | An) P (An) .
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Example 3.7 (Ross p. 128 Question 11). A type C battery is in working condition with
probability 0.7, whereas a type D battery is in working condition with probability 0.4.
A battery is randomly chosen from a bin consisting of 8 type C and 6 type D batteries.

(a) What is the probability that the battery works?
(b) Given that the battery does not work, what is the conditional probability that it

was a type C battery?

Solution.
(a) Let W be the event that the battery works. Then,

P (W ) = P (W | C)P (C) + P (W | D)P (D) = 0.7 · 8
14 + 0.4 · 6

14 = 4
7 .

(b) We have

P
(
C | W ′) = P (C ∩ W ′)

1 − P (W ) = P (W ′ | C) P (C)
1 − 4/7 .

Example 3.8. The police in a city administer a breath analyzer test to catch drunk
drivers. A drunk driver taking the test will always get a positive result (for alcohol).
However, 5% of sober drivers taking the test will still get a positive result. One in a
thousand drivers in that city drive while they are drunk. The police stops a driver at
random and administers the test. The test gives a positive result. What is the probability
that this driver is drunk?

Solution. Let A be the event that the driver is drunk and B be the event that we have
a positive result. Then,

P (A | B) = P (B | A) P (A)
P (B) = P (B | A) P (A)

P (B | A) P (A) + P (B | A′) P (A′) .

Substituting the respective probabilities, we have

1 · 1
1000

1 · 1
1000 + 0.05 · 999

1000
= 0.02.

□

Example 3.9. Identical twins are always of the same sex. Fraternal twins are equally
likely to be of the same sex as to be of different sex. Data collected in a city shows that
55% of twins are of the same sex. What is the probability that a randomly selected twin
in the city is a pair of identical twins?
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Solution. Let A be the event that the twins are of same sex, and I be the event
that the twins are identical. So, P (I) = p, P (I ′) = 1 − p, P (A) = 0.55, P (A | I) = 1,
P (A | I ′) = 0.5. By the law of total probability,

P (A) = P (A | I) P (I) + P
(
A | I ′)P

(
I ′) .

Substituting the probabilities yields p = 0.1. That is, there is a 0.1 probability that a
randomly selected twin in the city is a pair of identical twins. □

Example 3.10 (ST2131 AY24/25 Sem 1 Lecture 7). A student applying to a graduate
program asks his professor for a letter of recommendation. He estimates that his chances
of getting a strong, average, weak recommendation are 30%, 20%, and 10%, and lastly
a 40% chance of not receiving a recommendation letter.

He also estimates that his chances of getting accepted by the graduate programme would
be 90%, 40%, and 10% if the recommendation is strong, average, and weak respectively.

(a) Based on these estimates, what is his probability of getting accepted by the
graduate program?

(b) If he gets accepted by the graduate programme, what is the probability that his
letter of recommendation was a strong one?

Solution.
(a) We can split the event into disjoint events. Let S, A, W, N denote the event that he

gets a strong, average, weak, and no recommendation letter respectively. Also, let
⋆ denote the event where he gets accepted. Then, by the law of total probability
(Proposition 3.3),

P (⋆) = P (⋆ ∩ S) + P (⋆ ∩ A) + P (⋆ ∩ W )
= P (⋆ | S) P (S) + P (⋆ | A) P (A) + P (⋆ | W ) P (W )
= 0.9 · 0.3 + 0.4 · 0.2 + 0.1 · 0.1 = 0.36

(b) We use the definition of conditional probability on the event P (S | ⋆). We have

P (S | ⋆) = P (⋆ ∩ S)
P (⋆) = P (⋆ | S) P (S)

P (⋆) = 0.9 · 0.3
0.36 = 0.75.

Example 3.11 (Ross p. 129 Question 14). A coin having probability 0.8 of landing on
heads is flipped. A observes the result — either heads or tails, and rushes off to tell B.
However, with probability 0.4, A will have forgotten the result by the time he reaches
B. If A has forgotten, then rather than admitting this to B, he is equally likely to tell
B that the coin landed on heads or that it landed tails. If he does remember, then he
tells B the correct result.
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(a) What is the probability that B is told that the coin landed on heads?
(b) What is the probability that B is told the correct result?
(c) Given that B is told that the coin landed on heads, what is the probability that

it did in fact land on heads?

Solution:
(a) Let H be the event the coin is heads, T be the event the coin is tails and F

be the event A forgets and R be the event B is told heads. Then, P (H) = 0.8,
P (T ) = 0.2, P (F ) = 0.4, and P (F ′) = 0.6. By the law of total probability,

P (R) = P (R | H) P (H) + P (R | T ) P (T )
= (0.6 · 1 + 0.4 · 0.5) (0.8) + (0.6 · 0 + 0.4 · 0.5) (0.2)

which evaluates to 0.68.
(b) Let C be the event that B is told the correct result. By the law of total probability,

P (C) = P (C | H) P (H) + P (C | T ) P (T )
= (0.6 · 1 + 0.4 · 0.5) (0.8) + (0.6 · 1 + 0.4 · 0.5) (0.8)

which evaluates to 0.8.
(c) By Bayes’ theorem,

P (H | R) = P (R | H) P (H)
P (R) = (0.6 · 1 + 0.4 · 0.5) (0.8)

0.68

which evaluates to 0.941.

Corollary 3.1. For 1 ≤ i ≤ n,

P (Ai | B) = P (B | Ai) P (Ai)
P (B | A1) P (A1) + . . . + P (B | An) P (An) .

Example 3.12 (Monty Hall problem). Suppose you are on a game show, and given the
choice of three doors: Behind one door is a car; behind the others, goats (Figure 2). You
pick a door, say No. 1, and the host, who knows what’s behind the doors, opens another
door, say No. 3, which has a goat. He then says to you, “Do you want to pick door No.
2?" Is it to your advantage to switch your choice?
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Figure 2: The Monty hall problem

The answer is yes! Initially, the probability of winning a car is 1/3. After the host
opens Door 3, the probability of winning a car is surprisingly not 1/2, but instead 2/3!
We can prove this result using a tree diagram or in a more elegant manner, Bayes’
theorem.

Let A be the event that Door No. 1 has a car behind it and B be the event that
the host has revealed a door with a goat behind it. Then,

P (B | A) P (A) + P
(
B | A′)P

(
A′) = P (B) .

To see why,

P (B | A) P (A) + P
(
B | A′)P

(
A′) = P (A ∩ B) + P

(
B ∩ A′) .

As A and B are independent events,

P (A ∩ B) + P
(
B ∩ A′) = P (A) P (B) + P (B) P

(
A′)

= P (B)
[
P (A) + P (A)′

]
= P (B)

Now, it is clear that

P (A | B) = P (B | A) P (A)
P (B | A) P (A) + P (B | A′) P (A′) .

A is the event that Door No. 1 has a car behind it. B | A is the event that the host shows
a door with nothing behind, given that there is a car behind Door No. 1. Note that
P (A) = 1/3 and P (B | A) = P (B | A′) = 1. Putting everything together, P (A | B) =
1/3. Hence, the probability that the car is behind Door No. 3 is 2/3 and so you, the
contestant, should make the switch.
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Example 3.13 (Ross p. 125 Question 4). A ball is in any one of n boxes and is in the ith

box with probability Pi. If the ball is in box i, a search of that box will uncover it with
probability αi. Show that the conditional probability that the ball is in the box j, given
that a search of box i did not uncover it, is

Pj

1 − αiPi
if j ̸= i and (1 − αi) Pi

1 − αiPi
if j = i.

Solution. Let Bj be the event that ball is in box j and Ni be the event that search box
i does not uncover the ball. Then

P (Ni | Bj) =

1 − αi if j = i;
1 if j ̸= i.

By the law of total probability, we have

P (Ni) =
n∑

j=1
P (Ni | Bj) P (Bj) = (1 − αi) Pi +

∑
j ̸=i

P (Ni | Bj) P (Bj)

Note that ∑
j ̸=i

P (Ni | Bj) P (Bj) =
∑
j ̸=i

P (Bj) = 1 − Pi.

Hence,
P (Ni) = (1 − αi) Pi + 1 − Pi = 1 − αiPi.

We then use Bayes’ theorem, which states that

P (Bj | Ni) = P (Ni | Bj) P (Bj)
P (Ni)

.

If j ̸= i, then
P (Bj | Ni) = Pj

1 − αiPi
.

On the other hand, if j = i, then

P (Bj | Ni) = (1 − αi) Pi

1 − αiPi
.

□

Example 3.14 (Ross p. 129 Question 19). Three players simultaneously toss coins. The
coin tossed by A, B, C turns up heads with respective probabilities P1, P2, P3. If one
person gets an outcome different from those of the other two, then he is the odd man
out. If there is no odd man out, the players flip again and continue to do so until they
get an odd man out. What is the probability that A will be the odd man?
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Solution. At each stage, everyone can obtain heads with probability P1P2P3 or tails with
probability Q1Q2Q3, where Qi = 1 − Pi. Let k ∈ N be arbitrary. Consider a finite run of
length 3k consisting of blocks of the form P1P2P3 and Q1Q2Q3 . We can then arrange
the blocks as follows:

P1P2P3 Q1Q2Q3 Q1Q2Q3 . . . Q1Q2Q3 P1P2P3︸ ︷︷ ︸
run of length 3n

So, the probability required is
∞∑

k=0
(P1P2P3 + Q1Q2Q3)k (Q1P2P3 + P1Q2Q3) = Q1P2P3 + P1Q2Q3

1 − P1P2P3 − Q1Q2Q3
.

□

Example 3.15 (Ross p. 129 Question 21). If A flips n + 1 fair coins and B flips n fair
coins, what is the probability that A gets more heads than B? A hint is to condition on
which player has more heads after each has flipped n coins.

Solution. If A obtains k heads, then we wish to find the probability that B gets either
1, . . . , k − 1 heads, where 1 ≤ k ≤ n + 1. We have

P (A obtains k heads) =
(

n + 1
k

)(1
2

)k (1
2

)n+1−k
(

n + 1
k

)
1

2n+1 .

Then,

P (B obtains 1, . . . , k − 1 heads) =
k−1∑
j=1

(
n

j

)(1
2

)j (1
2

)n−j

=
k−1∑
j=1

(
n

j

)
1
2n

.

By independence and taking the sum over all 1 ≤ k ≤ n + 1, the required probability is
n+1∑
k=1

k−1∑
j=1

(
n + 1

k

)(
n

j

)
1

22n+1 = 1
22n+1

n+1∑
k=1

(
n + 1

k

)
k−1∑
j=1

(
n

j

)

Recall Pascal’s identity (Theorem 1.1), which states that(
n + 1

k

)
=
(

n

k

)
+
(

n

k − 1

)
.

This can be easily proven by writing each binomial coefficient out using factorials. Hence,
the mentioned expression becomes

1
22n+1

n+1∑
k=1

((
n

k

)
+
(

n

k − 1

))
k−1∑
j=0

(
n

j

)
= 1

22n+1

n+1∑
k=1

k−1∑
j=0

(
n

k

)(
n

j

)
+ 1

22n+1

n+1∑
k=1

k−1∑
j=0

(
n

k − 1

)(
n

j

)
.
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Note that
( n

n+1
)

= 0. We write the sum in teal as

∑
0≤j<k≤n

akaj where ar =
(

n

r

)
for 0 ≤ r ≤ n.

Note the identity ∑
0≤j<k≤n

ajak = 1
2

( n∑
r=0

ar

)2

−
n∑

r=0
a2

r

 .

Now
n∑

r=0

(
n

r

)
= 2n and

n∑
r=0

(
n

r

)2

=
(

2n

n

)
.

The latter is merely a consequence of Vandermonde’s identity (Theorem 1.4). Hence,
n+1∑
k=1

k−1∑
j=0

(
n

k

)(
n

j

)
= 1

2

(
4n −

(
2n

n

))
.

In a similar fashion,
n+1∑
k=1

k−1∑
j=0

(
n

k − 1

)(
n

j

)
= 1

2

(
4n +

(
2n

n

))
.

Hence, the required probability is
1

22n+1

(2 · 4n

2

)
= 1

2 .

□

3.3 Independent Events

Definition 3.2 (independent events). Two events A and B are independent if

P (A ∩ B) = P (A)P (B).

If equality does not hold, then A and B are dependent.

In relation to conditional probability, suppose P (B) > 0. If A and B are independent,
then P (A | B) = P (A) if knowledge that B has occurred odes not change the probability
that A occurs. Again, this follows by the definition of conditional probability (Definition
3.1).
Example 3.16 (Ross p. 125 Question 9). In each of n independent tosses of a coin, the coin
lands on heads with probability p. How large does n need to be so that the probability
of obtaining at least one head is at least 1

2?
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Solution. We must have

P (at least one head) ≥ 1
2 so P (all tails) ≤ 1

2 .

So, (1 − p)n ≤ 1
2 , which implies n ≥ − ln 2

ln(1−p) . □

Example 3.17 (Ross p. 129 Question 20). Suppose that there are n possible outcomes of
a trial, with outcome i resulting with probability pi for i ∈ {1, ..., n} and

n∑
i=1

pi = 1.

If two independent trials are observed, what is the probability that the result of the
second trial is larger than that of the first?

Solution. Let X1 and X2 denote the two events. We have

P (X2 > X1) = P (X1 > X2)

by symmetry. Then, note that

P (X1 > X2) =
∑
i<j

P (X1 = j and X2 = i) =
n∑

i=1

n∑
j=1

pipj .

Here, we used the fact that X1 and X2 are independent events. Moreover,

P (X1 = X2) =
n∑

i=1
P (X1 = i and X2 = i) =

n∑
i=1

p2
i .

Since
P (X1 > X2) + P (X2 > X1) + P (X1 = X2) = 1,

then
P (X2 > X1) = 1

2

(
1 −

n∑
i=1

p2
i

)
.

□

We shall now discuss pairwise independence and mutual independence.

Definition 3.3 (pairwise independence and mutual independence). Given three
events A, B and C, we say that they are pairwise independent if

P (A ∩ B) = P (A)P (B), P (A ∩ C) = P (A)P (C) and P (B ∩ C) = P (B)P (C).
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We say that A, B, and C are mutually independent if

P (A ∩ B ∩ C) = P (A)P (B)P (C).

If A, B, and C are pairwise independent, it does not necessarily imply that they
are mutually independent. The converse, however, is true. That is, if A, B and C are
mutually independent, then they are necessarily also pairwise independent. It follows
that mutual independence is a stronger condition than pairwise independence.
Example 3.18 (Ross p. 129 Question 23). Let A and B be events having positive
probability. State whether each of the following statements is necessarily true, necessarily
false, or possibly true.

(a) If A and B are mutually exclusive, then they are independent
(b) If A and B are independent, then they are mutually exclusive
(c) P (A) = P (B) = 0.6, and A and B are mutually exclusive
(d) P (A) = P (B) = 0.6 and A and B are independent

Solution. Suppose P (A) > 0 and P (B) > 0.
(a) We are given that A and B are mutually exclusive, so P (A ∪ B) = P (A) + P (B).

By the principle of inclusion and exclusion, P (A ∩ B) = 0. For A and B to be
independent, we must have P (A ∩ B) = P (A) P (B), but this forces either P (A)
or P (B) to be zero, which is a contradiction. So, the statement is necessarily false.

(b) We have P (A ∩ B) = P (A) P (B). Same as (a), this leads to a contradiction so
the statement is necessarily false.

(c) By the principle of inclusion and exclusion, P (A ∪ B) = 1.2 − P (A ∩ B). For A

and B to be mutually inclusive, P (A ∩ B) = 0, but this implies that P (A ∪ B) =
1.2, which is a contradiction. Hence, A and B are not mutually exclusive. So, the
statement is necessarily false.

(d) Let A and B both denote the event that a biased coin, which shows heads with
probability 0.6, lands on heads. Then P (A) = P (B) = 0.6 but the events are
dependent. Hence, the statement is necessarily false.

Example 3.19 (Ross p. 125 Question 9). Consider two independent tosses of a fair coin.
Let A be the event that the first toss results in heads, let B be the event that the second
toss results in heads, and let C be the event that in both tosses, the coin lands on the
same side. Show that the events A, B, C are pairwise independent — that is A and B

are independent, A and C are independent, and B and C are independent, but A, B, C

are not independent.

Solution. We have P (A) = 1
2 , P (B) = 1

2 , and P (C) = 1
2 . For A ∩ B, is the event that

the first and second toss result in heads, which has probability 1
4 . So, A and B are
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independent. Next, A ∩ C is again the event that the first and second toss result in
heads, which has probability 1

4 . Lastly, B ∩ C is also the event that the first and second
toss result in heads, which has probability 1

4 . Indeed, A and B are independent, A and
C are independent, and B and C are independent.

Note that A ∩ B ∩ C denotes the event that both the first and second toss result in heads,
which has probability 1

4 . However, P (A ∩ B ∩ B) is not equal to P (A) P (B) P (C). □

Example 3.20 (Ross p. 129 Question 22). Prove or give counterexamples to the following
statements:

(a) If E is independent of F and E is independent of G, then E is independent of
F ∪ G

(b) If E is independent of F and E is independent of G and FG = ∅, then E is
independent of F ∪ G

(c) If E is independent of F , and F is independent of G, and E is independent of FG,
then G is independent of EF

Solution.
(a) The statement is false. Let S = {1, 2, 3, 4}. Define E = {1, 2}, F = {1, 3}, and G =

{1, 4}. Hence, E ∩ F = {1} and E ∩ G = {1}. By computation, we see that

P (E ∩ F ) = P (E) P (F ) and P (E ∩ G) = P (F ∩ G) .

However, F ∪ G = {1, 3, 4}, which implies E ∩ (F ∪ G) = {1}. This shows that

P (E ∩ (F ∪ G)) ̸= P (E) P (F ∪ G) .

(b) The statement is true. Suppose E is independent of F , and E is independent of
G, and F ∩ G = ∅. Then,

P (E ∩ (F ∪ G)) = P ((E ∩ F ) ∪ (E ∩ G))
= P (E ∩ F ) + P (E ∩ G) − P (E ∩ F ∩ G)
= P (E) P (F ) + P (E) P (G)
= P (E) (P (F ) + P (G) − P (F ∩ G))

which is equal to P (E) P (F ∪ G). This implies that E is independent of F ∪ G.
(c) Suppose E is independent of F , F is independent of G, and E is inependent of

F ∩ G. By the associativity and commutativity of intersection, we have

P (G ∩ (E ∩ F )) = P (E ∩ (F ∩ G))
= P (E) P (F ∩ G)
= P (E) P (F ) P (G)
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which is equal to P (G) P (E ∩ F ). This shows that G is independent of E ∩ F .
The gambler’s ruin problem (Example 3.21) states that a gambler playing a game with
negative expected value will eventually go broke, regardless of their betting system.
Example 3.21 (gambler’s ruin problem). Consider a gambler’s situation, where his
starting fortune is $j, in every game, the gambler bets $1 and the gambler decides
to play until he either loses it all (i.e. fortune is 0) or his fortune reaches $N and he
quits. What is the probability to win†?

Solution. We use the gambler’s ruin equation to help us. However, we have to set up the
equation first! Let Aj be the event that the gambler wins if he starts with a fortune of
$j. Then, we can let xj = P (Aj). For every game, suppose

P (win) = p, P (lose) = q and P (draw) = r which implies p + q + r = 1.

By using first-step analysis, we can set up a second-order linear homogeneous recurrence
relation. That is,

pxj+1 − (p + q) xj + qxj−1 = 0,

where x0 = 0 and xN = 1 and the aforementioned equation is referred to as the gambler’s
ruin equation. We shall prove this result. It suffices to show that

(p + q)xj = pxj+1 + qxj−1

To transit from the xj to xj+1, the player needs to win, hence we multiply by the
associated probability p. The same can be said for the transition from xj to xj−1, where
the player needs to lose, implying that we multiply by q. For the player to remain at the
same state, he needs to obtain a draw. That is, multiplying xj by r. As such,

xj = pxj+1 + qxj−1 + rxj

(1 − r)xj = pxj+1 + qxj−1

(p + q)xj = pxj+1 + qxj−1

The initial conditions x0 = 0 and xN = 1 are obvious because when he has a fortune of
$0, it is impossible for him to win, and similarly, when he reaches $N , he already won,
implying that P (AN ) = xN = 1

One can solve the recurrence relation to obtain the required probability

xj =
1 −

(
q
p

)j

1 −
(

q
p

)N
if p ̸= q.

†The interested reader can visit this link for more information on this interesting concept of the gambler’s
ruin problem.

https://people.math.umass.edu/~lr7q/ps_files/teaching/math456/Chapter4.pdf
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To see why the above equation holds, given the gambler’s ruin equation

pxj+1 − (p + q)xj + qxj−1 = 0,

we first find the auxiliary equation. That is, pm2 − (p + q)m + q = 0. Solving yields
m = 1 or m = q

p . The solution to the recurrence relation is of the form

xj = A + B

(
q

p

)j

.

Setting j = 0 gives A = −B. Setting j = N gives xN = 1, which implies

A − A

(
q

p

)N

= 1 so A = 1

1 −
(

q
p

)N

Once we have found A, we can find B, and the rest is simple algebraic manipulation. □

Example 3.22 (ST2131 AY24/25 Sem 2 Tutorial 4). If 0 ≤ ai ≤ 1, where i = 1, 2, . . .,
show that

∞∑
i=1

ai

i−1∏
j=1

(1 − aj)

+
∞∏

i=1
(1 − ai) = 1.

Hint: Suppose that an infinite number of coins are to be flipped. Let ai be the probability
that the ith coin lands heads, and consider when the first head occurs.

Solution. Let ai denote the probability that the ith coin lands heads, so 1 − ai denotes the
probability that the ith coin lands tails. We first investigate this problem by constructing
some example, i.e. replace ∞ by some positive integer, say 2 (the term on the left is
defined if the upper index in the sum ≥ 2). So, we wish to justify that

2∑
i=1

ai

i−1∏
j=1

(1 − aj)

+
2∏

i=1
(1 − ai) = 1.

Equivalently, we have

a1︸︷︷︸
H

+ a2 (1 − a1)︸ ︷︷ ︸
T H

+ (1 − a1) (1 − a2)︸ ︷︷ ︸
T T

= 1.

Note that

a1 = a1

0∏
j=1

(1 − aj) = a1 · 1 = a1.

We mentioned the respective outcomes too. For example, a2 (1 − a1) denotes the
probability that the first coin lands heads and the second coin lands tails. In fact,
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although ‘a1 denotes heads’ feels like a lack of information, it actually implies that
the second outcome can be either heads or tails, i.e.

a1 = a1a2︸ ︷︷ ︸
HH

+ a1 (1 − a2)︸ ︷︷ ︸
HT

.

So, for the case when the mentioned upper index in the sum is 2, it means that in a
sequence of two tosses, the probability of obtaining either HH, HT, TH, TT is 1. When
the upper index is some N ∈ N, it means that in a sequence of N tosses, the probability
of obtaining either of the 2N outcomes is 1. Naturally, when we let N → ∞, we obtain
the desired identity.

We shall prove this formally. In the expression

∞∑
i=1

ai

i−1∏
j=1

(1 − aj)

 ,

the product of 1 − aj over all 1 ≤ j ≤ i − 1 denotes the probability that the first i − 1
flips are tails. Further multiplying this by ai, we see that for the case when i = 1,

a1

i−1∏
j=1

(1 − aj)

denotes the probability of the first head occurring on the 1st trial. In general,

ai

i−1∏
j=1

(1 − aj)

denotes the probability that the first head occurs on the ith trial. Summing over all
i ∈ N, we obtain the probability that the first head occurs on some arbitrary trial! Since

∞∏
i=1

(1 − ai)

denotes the probability that all tosses land on tails, summing the mentioned probabilities
yields 1. □

Example 3.23 (ST2131 AY24/25 Sem 2 Tutorial 4). Let S = {1, 2, . . . , n} and suppose
that A and B are, independently, equally likely to be any of the 2n subsets (including
the null set and S itself) of S.

Show that
P (A ⊆ B) =

(3
4

)n

.
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Show that
P (A ∩ B = ∅) =

(3
4

)n

.

Solution. We condition on the number of elements of B. Suppose | B| = 0, i.e. B = ∅.
Then, A = ∅ trivially. On the other hand, if |B| = 1, then B = {1}. Then, there are two
possibilities for A — ∅ or {1}. Continuing this process, if |B| = 2, then B = {1, 2}. Then,
there are four possibilities for A — ∅, {1} , {2} , {1, 2}.

In general, if |B| = k, where k ≤ n, i.e. B = {1, . . . , k}, there are 2k possible ways to form
our subset A ⊆ B since each of the k elements can either be chosen or not. Summing
over all 0 ≤ k ≤ n, the total number of ways to form sets A ⊆ B ⊆ S is

n∑
k=0

(
n

k

)
2k.

Here, the term
(n

k

)
is the number of ways to form the sets B, i.e. k-element subsets. This

is equivalent to the number of ways to choose k objects out of n distinct ones. By the
binomial theorem,

n∑
k=0

(
n

k

)
2k = (2 + 1)n = 3n.

We then divide this quantity by 4n to obtain the desired probability. In fact, 4n = 2n · 2n

can be interpreted as the number of ways to form the n-element subsets A, B ⊆ S without
restrictions. □
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Chapter 4

Discrete Random Variables

4.1 Discrete Random Variables

A random variable is discrete if the range of X is either finite or countably infinite.
The latter means that there exists a bijection f : X → N. Examples of discrete random
variables include the binomial distribution covered in H2 Mathematics and the geometric
distribution and the poisson distribution covered in H2 Further Mathematics.

Here, we will study a few more distributions. For example, the Bernoulli distribution,
named after Jacob Bernoulli, who came from an academically gifted family that produced
eight notable mathematicians and physicists. Also, we will study the negative binomial
distribution, which is closely related to the geometric distribution, and the last addition
to this series is the hypergeometric distribution, which is implicitly covered since one’s
O-Level days.

Definition 4.1 (discrete random variable). Suppose a random variable X is discrete,
taking values x1, x2, . . .. Then, the probability mass function of X is

PX (x) =

P (X = x) if x = x1, x2, . . . ;
0 otherwise

The probability mass function is abbreviated as PMF.

Proposition 4.1. Some properties of the probability density/mass function are as
follows:

(i) pX(xi) ≥ 0 for i = 1, 2, . . .

(ii) pX(x) = 0 for all other values of x

(iii) Since X must take on one of the values of xi, then
∞∑

i=1
pX(xi) = 1.

We use uppercase letters to denote random variables and use lowercase letters to
denote the values of random variables.
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Definition 4.2 (cumulative distribution function). The cumulative distribution
fufnction of X, or CDF in short and denoted by FX , is defined as FX : R → R,
where

FX(x) = P (X ≤ x) for x ∈ R.

If x1 < x2 < x3 < . . ., then, F is a step function. That is, F is constant in the
interval [xi−1, xi).

Example 4.1 (Ross p. 199 Question 10). An urn contains n balls numbered 1 through
n. If you withdraw m balls randomly in sequence, each time replacing the ball selected
previously, find P (X = k) where k = 1, . . . , n, where X is the maximum of the m chosen
numbers. A hint is to first find P (X ≤ k).

Solution. X ≤ k means every one of the m draws lies in {1, . . . , k}. Each ball hits the
set with probability k

n . Hence, we have

P (X ≤ k) =
(

k

n

)m

.

So,
P (X = k) = P (X ≤ k) − P (X ≤ k − 1) =

(
k

n

)m

−
(

k − 1
n

)m

.

□

Example 4.2 (Ross p. 189 Question 19). If the distribution function of the random
variable X is given by

F (x) =



0 x < 1
1
4 1 ≤ x < 3
5
8 3 ≤ x < 4
3
4 4 ≤ x < 6
7
8 6 ≤ x < 7
1 x ≥ 7

,

calculate the probability mass function of X.

Solution. Given the distribution function F (x) of the random variable X, we compute
the probability mass function p(x) = P (X = x) by evaluating the jump in F (x) at each
point. For example, P (X = 1) − F (1) − F (1−) which is equal to 1

4 . Repeat this for the
other probabilities to obtain the probability mass function as follows:

x 1 3 4 6 7
P (X = x) 1

4
3
8

1
8

1
8

1
8
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□

4.2 Expectation

Definition 4.3 (expectation). The expected value of X, or the expectation of X,
denoted by E(X) or µX , is defined by

E(X) =
∑
all x

xP (X = x).

Proposition 4.2. We state some properties of expectation. Let X and Y be random
variables and a and b be constants.

(i) E(aX) = aE(X)
(ii) E(a) = a

(iii) E(aX ± b) = aE(X) ± b

(iv) E(aX ± bY ) = aE(X) ± bE(Y )
(v) If X1, X2, . . . , Xn are independent random variables, then

E

(
n∑

i=1
Xi

)
=

n∑
i=1

E (Xi) = nE(X).

Given a random variable X, we are often interested about g(X) and E(g(X)). The
question is how do we compute the latter? One method is to find the PDF of g(X) first
before proceeding to compute E(g(X)) by definition. We have the following proposition
that if X is a discrete random variable that takes values xi, where i ≥ 1, with respective
probabilities pX(xi), then for any real-valued function g,

E(g(X)) =
∑
all x

g(x)PX(x).

We can derive the four properties of expectation stated above, as well as by setting
g(x) = x2, we have

E(X2) =
∑
all x

x2PX(x).

We call this the second moment of X. We can generalise this result to E(Xn) for n ∈
N, which is of interest when we discuss the moment generating function of a random
variable, as well as E (1/X). As such,

E(Xn) =
∑
all x

xnPX(x) and E

( 1
X

)
=
∑
all x

1
x

· PX(x).



MA2116 ST2131 PROBABILITY Page 63 of 156

Example 4.3 (Ross p. 198 Question 2). Suppose that X takes on one of the values 0, 1
and 2. If for some constant c, P (X = i) = cP (X = i − 1) for i = 1, 2, find E(X).

Solution. We have the following probability distribution table.

i 0 1 2

P (X = i) p cp c2p

As such, we have E (X) = cp + 2c2p. □

Example 4.4 (Ross p. 195 Question 6). Let X be a random variable such that P (X =
1) = 1 − P (X = −1). Find c ̸= 1 such that E

(
cX
)

= 1.
Example 4.5 (Ross p. 189 Question 24). A and B play the following game: A writes down
either number 1 or 2, and B guesses which one. If A has written i and B also guesses i,
then B receives i dollars from A. If B makes a wrong guess, B pays $0.75 to A. Suppose
B randomizes his decision by guessing 1 with probability p and 2 with probability 1 − p.

Let X and Y be the amount that B gains if A has written 1 and 2 respectively. Find
E[X] and E[Y ] and the value of p such that the smaller value of E[X] and E[Y ] attains
the maximum value.

Solution. We have

E (X) = p − 0.75(1 − p) = 1.75p − 0.75 and E(Y ) = 2(1 − p) − 0.75p = 2 − 2.75p.

We wish to find the value of p that maximises min {1.75p − 0.75, 2 − 2.75p}, which is the
p-coordinate of the intersection point of the graphs of y = 1.75p − 0.75 and y = 2 − 2.75p.
One checks that it is p = 11/18. □

Example 4.6 (Ross p. 189 Question 23). You have $1000, and a certain commodity
presently sells for $2 per ounce. Suppose that after one week the commodity will sell for
either $1 or $4 an ounce, with these two possibilities being equally likely.

(a) If your objective is to maximize the expected amount of money that you possess
at the end of the week, what strategy should you employ?

(b) If your objective is to maximize the expected amount of the commodity that you
possess at the end of the week, what strategy should you employ?

Solution.
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(a) Let X be the random variable denoting the price next week. Say we buy q ounces
now, leaving us with 1000 − 2q cash remaining. Hence, our wealth next week is

W (q) = 1000 − 2q + qX.

Hence,

E (W ) = 1000 − 2q + qE (X) = 1000 − 2q + q

(1 + 4
2

)
= 1000 + q

2
which is increasing in q. To maximise the expectation, we should set q = 0.

(b) We now wish to maximise the expected amount of the commodity that we possess
at the end of the week. Let q be the number of ounces bought today. After one
week, say the price of the commodity is X, so define

C (q) = q + 1000 − 2q

X
.

The expectation is 5
4q + 5000

8 . To maximise the expected commodity, take q =
500.

Example 4.7 (Ross p. 195 Question 4). Suppose

P (X = n) = 4
n (n + 1) (n + 2) where n ≥ 1.

(a) Show that the preceding is actually a probability mass function.
(b) Show that E(X) = 2.
(c) Show that E(X2) = ∞.

Solution.
(a) One can prove using partial fractions, then recognising that the sum is a telescoping

series, that
∞∑

n=1

4
n (n + 1) (n + 2) = 1

so indeed, the preceding is indeed a probability mass function.
(b) We have

E (X) =
∞∑

n=1
nP (X = n) =

∞∑
n=1

4
(n + 1) (n + 2)

for which by partial fraction decomposition again yields E (X) = 2.
(c) We have

E
(
X2
)

=
∞∑

n=1

4n

(n + 1) (n + 2) ≥
∞∑

n=1

1
n

where the sum on the right, known as the harmonic series, diverges. The result
follows. In fact, this exercise shows that E

(
X2) is infinite, thus Var (X) is also

infinite.
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Example 4.8 (modified from Ross p. 198 Question 4). There are four buses, carrying 40,
35, 25, 50 students respectively (not counting the drivers).

(a) From the 150 students, one of them is selected at random, and X denotes the
number of students on his/her bus. Find E(X).

(b) From the 4 bus drivers, one of them is selected at random, and Y denotes the
number of students on his/her bus. Find E(Y ).

In a completely new setup, suppose we have buses 1, . . . , r with bus i having ni many
students. Let X be the random variable denoting the number of students in the bus when
the student is randomly selected, and Y is the random variable denoting the number
of students in the bus when the driver is randomly selected. Prove or disprove whether
E (Y ) ≤ E (X).
Solution.

(a) Picking a student uniformly from the 150 size-biases towards bigger buses. We
have

E (X) =
∑

x

xP (X = x) = 40 · 40
150 + . . . + 50 · 50

150 = 119
3 .

(b) Picking a driver uniformly from the 4 drivers gives a plain average. We have

E (Y ) =
∑

y

yP (Y = y) = 40 · 1
4 + . . . + 50 · 1

4 = 0.375.

As for the last (interesting) part where we are asked to prove or disprove whether E (Y ) ≤
E (X), let the total number of students be S. Then, n1 + . . . + nr = S. We have

E (X) = n1 · n1
S

+ . . . + nr

S
= 1

S

r∑
i=1

n2
i .

Next,

E (Y ) = n1 · 1
r

+ . . . + nr · 1
r

= 1
r

r∑
i=1

ni = S

r
.

By the Cauchy-Schwarz inequality,

r

(
r∑

i=1
n2

i

)
≥
(

r∑
i=1

ni

)2

so r

(
r∑

i=1
n2

i

)
≥ S2.

Equivalently, E (X) ≥ E (Y ), so the statement holds.

Definition 4.4 (moment). In general, for n ≥ 1, E(Xn) is the nth moment of X.
The expected value of a random variable X, E(X), is also referred to as the first
moment or the mean of X.
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Next, we define
E(X − µ)n

to be the nth central moment of X. Hence, the first central moment is 0 and the second
central moment is E(X − µ)2, which is called the variance of X.

Proposition 4.3 (tail sum formula for expectation). For a non-negative integer-
valued random variable X,

E(X) =
∞∑

i=1
P (X ≥ i) =

∞∑
i=0

P (X > i).

4.3 Variance and Standard Deviation

Definition 4.5 (variance and standard deviation). If X is a random variable with
mean µ, then the variance of X, denoted by Var(X), is defined by

Var(X) = E(X − µ)2.

The standard deviation of X, denoted by σX , is defined by
√

Var(X).

An alternative formula for variance is

Var(X) = E(X2) − [E(X)]2.

Proof.

Var(X) = E(X − µ)2

= E(X2 − 2µX + µ2)
= E(X2) − 2µE(X) + E(µ2)
= E(X2) − 2[E(X)]2 + µ2

= E(X2) − 2[E(X)]2 + [E(X)]2

and the result follows.

Note that Var(X) ≥ 0 since it is the square of the standard deviation. Since standard
deviation is defined as the spread of data about the mean, then the result follows.
Alternatively, we can think of it in a more mathematical way. By the definition of Var(X),
we have Var(X) = E(X − µ)2. Note that the right side of the equation is non-negative,
and hence the result follows too.
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Definition 4.6 (degenerate random variable). We say that Var(X) = 0 if and only
if X is a degenerate random variable.

Moreover, from the formula for variance, it follows that

E(X2) ≥ [E(X)]2 ≥ 0.

Is it true that for all n ∈ N,
E(Xn) ≥ [E(X)]n?

We will discuss this in one of the final sections, and to prove this conjecture, we need to
use a famous inequality called Jensen’s inequality (Theorem 8.3).

Proposition 4.4. We state some properties of variance. Let X be a random variable
and a and b be constants. Then,

(i) Var(aX) = a2 Var(X)
(ii) Var(a) = 0

(iii) Var(aX + b) = a2 Var(X)
(iv) If X1, X2, . . . , Xn are independent random variables, then

Var
(

n∑
i=1

Xi

)
=

n∑
i=1

Var (Xi) = n Var(X).

4.4 Bernoulli Distribution

Let us discuss the first special discrete random variable, known as the Bernoulli
Distribution. If X ∼ Bernoulli(p),

X =
{

1 if it is a success
0 if it is a failure

.

We refer p to be the probability of success and q to be the probability of failure. In
particular, we say that p is the parameter of the distribution since it is the only term
within the bracket. As such, p + q = 1. Then, P (X = 1) = p and P (X = 0) = 1 − p = q.

Proposition 4.5. The expectation and variance of a Bernoulli random variable
with parameter p is

E(X) = p and Var(X) = pq.

We first prove the result for expectation, which is obvious.

Proof. E (X) = 0 · q + 1 · p = p
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Next, we prove the result for variance.

Proof. E
(
X2) = 02 · q + 12 · p = p. As [E (X)]2 = p2, then Var (X) = p − p2 = p(1 −

p) = pq.

Even though the Bernoulli distribution is rather new in this context, it is actually
not new because it is closely related to the binomial distribution. We will discuss this in
Chapter 4.5.
Example 4.9 (Ross p. 200 Question 21). Suppose

P (X = a) = p and P (X = b) = 1 − p.

Here, a, b ∈ R are distinct. One can easily prove that X−a
a−b is a Bernoulli random variable,

but we omit the details. Find Var (X).

Solution. We have

E (X) = ap + b − bp and E
(
X2
)

= a2p + b2 − b2p.

Then,

Var (X) = E
(
X2
)

− [E (X)]2

= a2p + b2 − b2p − (ap + b − bp)2

□

Example 4.10. Suppose X1, . . . , X9 are Bernoulli random variables with parameters
1

1 · 2 ,
1

2 · 3 , . . . ,
1

9 · 10
respectively.

(a) Find the value of E (X1 + . . . + X9).
(b) Find the value of E

(
X1 + X2

2 + X3
3 + X4

4
)
.

Solution.
(a) By the linearity of expectation,

E (X1 + . . . + X9) = E (X1) + . . . + E (X9)

= 1
1 · 2 + 1

2 · 3 + . . . + 1
9 · 10

=
9∑

n=1

1
n (n + 1)

By partial fraction decomposition, one can see this as a telescoping series, which
evaluates to 0.9.
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(b) Again by the linearity of expectation,

E
(
X1 + X2

2 + X3
3 + X4

4

)
= E (X1) + E

(
X2

2

)
+ E

(
X3

3

)
+ E

(
X4

4

)
= 1

1 · 2 + 1
2 · 3 + 1

3 · 4 + 1
4 · 5

which evaluates to 0.8.
To summarise,

Random Variable PDF Parameter(s) E(X) Var(X)

Bernoulli(p) X =
{

1 if it is a success
0 if it is a failure

p p pq

4.5 Binomial Distribution

Suppose we perform an experiment n times and the probability of success for each
trial is p. We define X to be the number of successes in n Bernoulli(p) trials. Then, X

takes values between 0 and n inclusive and for 0 ≤ k ≤ n,

P (X = k) =
(

n

k

)
pkqn−k.

We can write it as X ∼ B(n, p) and we the values of k the random variable can take
are referred to as the support of X. Recall that there are k successes and hence, n − k

failures. The probability of success and probability of failure are p and q respectively.
Thus, we obtain the PDF formula for the binomial random variable.

Some examples where the binomial distribution can be used are as follows:
Example 4.11 (number of correct answers from multiple-choice questions). The probability
of getting right answers out of 20 multiple-choice questions when one out of four options
were chosen arbitrarily. Here, X denotes the number of right answers. The probability
of an answer being right is 1

4 . The binomial distribution can be represented as X ∼
B
(
20, 1

4

)
.

Example 4.12 (coin toss). Suppose a coin is tossed 50 times and we wish to find out
how many heads we obtain. Here, X is the number of successes. That is the number of
times heads occurs. The probability of getting a head is 1

2 . The binomial distribution
could be represented as X ∼ B

(
50, 1

2

)
.

Example 4.13 (Ross p. 200 Question 31). Let X be the ith smallest number in a random
sample of n of the numbers 1, . . . , n + m. Find the probability mass function of X.
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Solution. For k to be the ith smallest number, we must have i − 1 numbers in
{1, . . . , k − 1}, then let the ith number be k, and n − i numbers in {k + 1, . . . , m + n}.
Hence,

P (X = k) =

(
k − 1
i − 1

)(
m + n − k

n − i

)
(

m + n

n

) for k = i, i + 1, . . . , N − (n − i) .

□

Example 4.14 (Ross p. 191 Question 50). When coin 1 is flipped, it lands on heads with
probability 0.4; when coin 2 is flipped, it lands on heads with probability 0.7. One of
these coins is randomly chosen and flipped 10 times

(a) What is the probability that the coin lands on heads on exactly 7 of the 10 flips?
(b) Given that the first of these 10 flips lands heads, what is the conditional probability

that exactly 7 of the 10 flips land on heads?
Solution. Let X denote the number of times coin 1 lands on heads and Y denote the
number of times coin 2 lands on heads. Then, X ∼ B (10, 0.4) and Y ∼ B (10, 0.7).

(a) Note that the probability of choosing either coin 1 or coin 2 is 1
2 . By the law of

total probability, the desired probability is

1
2P (X = 7) + 1

2P (Y = 7) = 1
2

(
10
7

)
(0.4)7(0.6)3 + 1

2

(
10
y

)
(0.7)7(0.3)3

= 0.155

(b) Let A be the event that the first of the 10 flips lands heads, and B be the event
that exactly 7 of the 10 flips land on heads. Then, we wish to find the value of
P (B | A). Then, A ∩ B is the event that we obtain the sequence

H THHHHHHTT︸ ︷︷ ︸
some permutation of Hs and Ts

,

which occurs with probability

1
2 · 0.4 ·

(
9
6

)
(0.4)6 (0.6)3 + 1

2 · 0.7 ·
(

9
6

)
(0.7)6 (0.3)3 .

Here, we used the law of total probability. Next, and again using the law of total
probability, we have

P (A) = 1
2 · 0.4

9∑
k=0

(
9
k

)
(0.4)k (0.6)9−k + 1

2 · 0.7
9∑

k=0

(
9
k

)
(0.7)k (0.3)9−k .
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Hence,

P (B | A) = P (B ∩ A)
P (A) = 0.108253341

0.55 = 0.197.

Example 4.15. A biased coin has a probability of 75% of showing head. The coin is
flipped 10 times independently.

(a) Given that a total of 6 heads appeared among the 10 flips, what is the conditional
probability that the first 3 flips are head, tail, tail?

(b) Given that a total of 6 heads appeared among the 10 flips, what is the conditional
probability that exactly 3 heads appear in the first 4 flips?

Solution.
(a) Let X be the random variable denoting the outcome of the biased coin. Then, X ∼

B (10, 0.75), where heads denotes a positive outcome. The required probability is

0.75 · 0.252 ·
(

7
5

)
0.755 · 0.252

P (X = 6) = 0.0996.

(b) The probability is (
4
3

)
0.753 · 0.25 ·

(
6
3

)
0.753 · 0.253

P (X = 6) = 0.380.

Example 4.16 (Ross p. 199 Question 13). Each of the members of a 7-judge panel
independently makes a correct decision with probability 0.7. If the panel’s decision is
made by majority rule, what is the probability that the panel makes the correct decision?
Given that 4 of the judges agreed, what is the probability that the panel made the correct
decision?

Solution. Let X denote the number of judges that make the correct decision. So, X ∼
B (7, 0.7). The panel is correct if and only if X ≥ 4. One works out that P (X ≥ 4) =
0.874. Next, let A be the event that the panel is correct and B be the event that 4 of
the judges agreed. Then, we have

P (A | B) = P (A ∩ B)
P (B) = P (X = 4)

P (X = 3) + P (X = 4) = 0.7.

□
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Example 4.17. There are 2 coins. Coin A has a 40% probability of showing heads, and
coin B has a 70% probability of showing heads. One of the coins is chosen at random
and flipped 10 times.

(a) What is the probability that we see 9 or more heads?
(b) If we do see 9 or more heads, what is the probability that coin B was the chosen

one?
Solution.

(a) By the law of total probability,

P (9 or more heads) = P (9 or more heads | A) P (A) + P (9 or more heads | B) P (B)

=
[(

10
9

)
0.49 · 0.6 +

(
10
10

)
0.410

]
0.5 +

[(
10
9

)
0.79 · 0.3 +

(
10
10

)
0.710

]
0.5

= 0.0755

(b) From (a), we know that

P (9 or more heads | B) = 0.14930 and P (B) = 0.5.

Also, P (9 or more heads) = 0.075493. By Bayes’ theorem,

P (B | 9 or more heads) = 0.14930 · 0.5
0.075493

which evaluates to 0.989.
Example 4.18 (Ross p. 199 Question 8). Let B(n, p) represent a binomial random variable
with parameters n and p. Argue that

P (B(n, p) ≤ i) = 1 − P (B(n, 1 − p) ≤ n − i − 1)

Solution. Let X ∼ B (n, p) be a binomial random variable. Define Y = n − X. We claim
that Y ∼ B (n, 1 − p). To see why this holds, note that

P (Y = y) = P (n − X = y) = P (X = n − y) =
(

n

n − y

)
pn−y (1 − p)y .

By the symmetry of binomial coefficients, this is equal to(
n

y

)
(1 − p)y pn−y

which confirms our assertion that Y ∼ B (n, 1 − p). We wish to prove that

P (X ≤ i) = 1 − P (Y ≤ n − i − 1) .



MA2116 ST2131 PROBABILITY Page 73 of 156

Since Y = n − X, then this statement is equivalent to

P (X ≤ i) = 1 − P (n − X ≤ n − i − 1)

which holds because P (X ≤ i) + P (X ≥ i + 1) = 1. □

Example 4.19.
Example 4.20 (Ross p. 200 Question 30). If X is a binomial random variable with
parameters n and p, what type of random variable is n − X?

Solution. Let Y = n − X. Then,

P (Y = y) = P (n − X = y) = P (X = n − y) =
(

n

n − y

)
pn−y (1 − p)y .

By the symmetry of binomial coefficients (Proposition 1.5), it follows that n − X ∼
B (n, 1 − p). □

Example 4.21 (Ross p. 195 Question 16). Suppose that n independent tosses of a coin
having probability p of coming up heads are made. Show that the probability that an
even number of heads results is 1

2 [1 + (q − p)n], where q = 1 − p.

Solution. Let X ∼ B(n, p) be the number of heads and q = 1 − p. Then,

P (even number of heads) =
⌊n/2⌋∑
i=0

(
n

2i

)
p2iqn−2i.

We consider the binomial expansions

(p + q)n =
n∑

j=0

(
n

j

)
pjqn−j and (q − p)n =

n∑
j=0

(
n

j

)
(−1)j pjqn−j .

Adding them yields

(p + q)n + (q − p)n = 2
∑

0≤j≤n
j even

(
n

j

)
pjqn−j .

Dividing both sides by 2 and recognising that p + q = 1, the result follows. □

Proposition 4.6. Let X ∼ B (n, p). Then,

E(X) = np and Var(X) = npq.

We will only prove the formula for expectation.
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Proof.

E(X) =
n∑

k=0
k

(
n

k

)
pkqn−k =

n∑
k=1

k

(
n

k

)
pkqn−k =

n∑
k=0

n

(
n − 1
k − 1

)
pkqn−k

Using the substitutions m = n − 1 and j = k − 1,

np
n∑

k=0

(
n − 1
k − 1

)
pk−1q(n−1)−(k−1) = np

m∑
j=0

(
m

j

)
pjqm−j .

We then note that
m∑

j=0

(
m

j

)
pjqm−j is the sum of probabilities of the binomial random variable,

which is 1, and we are done.

Alternatively, we can prove the expectation formula by considering it as a sum of
independent Bernoulli trials. For the variance proof, I will leave it as an exericse as it is
not too complicated and the technique is, of course, similar to that for the expectation.
When proving the formula for variance, note that

Var(X) = E [X(X − 1)] + E(X) − [E(X)]2

and a classic trick to proving this result is by finding an expression for E[X(X − 1)].
Example 4.22 (Ross p. 199 Question 9). If X is a binomial random variable with
expectation 6 and variance 2.4, find P (X = 5).

Solution. Suppose X ∼ B (n, p). Then, using the formulae for expectation and variance,
we have np = 6 and np (1 − p) = 2.4. By elimination, we have 1 − p = 0.4, so p = 0.6.
So, n = 10. Hence, P (X = 5) = 0.201. □

Example 4.23 (Ross 9th edition p. 181 Question 10). Let X be a binomial random variable
with parameters n and p. Show that

E

[ 1
X + 1

]
= 1 − (1 − p)n+1

(n + 1)p
Solution. Let X ∼ B (n, p). Then,

E

( 1
X − 1

)
=

n∑
k=0

P (X = k)
k + 1

=
n∑

k=0

1
k + 1

(
n

k

)
pk (1 − p)n−k

= 1
n + 1

n∑
k=0

(
n + 1
k + 1

)
pk (1 − p)n−k

and the result follows with some manipulation. □
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Definition 4.7 (mode). The mode is the value k at which the PDF takes its
maximum value. In other words, it is the value that is most likely to be sampled.

Proposition 4.7. For a binomial distribution with parameters n and p, the mode
is

k = ⌊(n + 1)p⌋ or k = ⌈(n + 1)p⌉ − 1.

Proof. Note that
P (X = k + 1)

P (X = k) = p(n − k)
(1 − p)(k + 1)

which can be easily derived via the PDF of the binomial distribution. For convenience
sake, we set P (X = k) = f(k). There are three cases to consider, namely f(k) > f(k + 1),
f(k) < f(k + 1) and f(k) = f(k + 1). For the last case, where f(k) = f(k + 1), the graph
of the binomial distribution has two peaks, or two maximum points. Such a distribution
is bimodal.

For the first case,
p(n − k)

(1 − p)(k + 1) < 1,

which implies that (n + 1)p < k + 1. Since we know that k is the mode, by definition of
the floor function, the result follows. It is not difficult to prove the modal result for the
other two cases. I shall leave this as an exercise.

Example 4.24. A biased coin has a 55% probability of showing heads. The coin is flipped
200 times independently. What is the number of heads that is most likely to appear?

Solution. We can model this using a binomial distribution, say X ∼ B (200, 0.55). We
are essentially finding the mode of the distribution. Suppose the mode is k. Then,

P (X = k) ≥ P (X = k − 1) and P (X = k) ≥ P (X = k + 1) .

By the mass formula for a binomial distribution,(
200
k

)
(0.55)k (0.45)200−k ≥

(
200

k − 1

)
(0.55)k−1 (0.45)201−k

and (
200
k

)
(0.55)k (0.45)200−k ≥

(
200

k + 1

)
(0.55)k+1 (0.45)199−k .
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One can show, using algebraic manipulation any mode k must satisfy

201 · 0.55 − 1 ≤ k ≤ 201 · 0.55.

Since 201 · 0.55 = 110.55, the only integer k in this interval is 110. □

Random Variable PDF Parameter(s) E(X) Var(X)

B(n, p)
(n

k

)
pkqn−k n and p np npq

Proposition 4.8 (additivity). The sum of two independent binomial random vari-
ables with the same probability of success, p, still follows a binomial distribution.
That is, if X ∼ B(m, p) and Y ∼ B(n, p), then X + Y ∼ B(m + n, p).

Proof: Note that X + Y takes values between 0 and m + n inclusive. Hence,

P (X + Y = k) =
k∑

i=0
P ({X = i} ∩ {Y = k − i})

=
k∑

i=0
P (X = i) P (Y = k − i)

=
k∑

i=0

(
m

i

)
piqm−i

(
n

k − i

)
pk−iqn−k+i

= pkqm+n−k
k∑

i=0

(
m

i

)(
n

k − i

)

=
(

m + n

k

)
pkqm+n−k

From the second last line to the last line, we used Vandermonde’s identity (Theorem
1.4).
Example 4.25 (ST2131 AY24/25 Sem 1 Lecture 6). A fair coin is tossed repeatedly. The
outcomes of the tosses are assumed to be independent.

(a) Let p be the probability of getting 30 heads before 10 tails. Let q be the probability
of getting 30 tails before 10 heads. Is p = q?

(b) Let p be the probability of getting 30 heads before 10 tails. Let q be the probability
of getting 10 heads before 30 tails. Is p = q?

(c) Let p be the probability of getting 30 heads before 10 tails. Let q be the probability
of getting 10 heads before 30 tails. Is p + q = 1?
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Solution.
(a) This is true. The coin is fair, so by symmetry it is true.
(b) False. Intuitively, it is easier to reach 10 heads first before 30 heads. We can do

some calculations to verify this.

p =
39∑

k=30

(
39
k

)(1
2

)k (
1 − 1

2

)39−k

=
39∑

k=30

(
39
k

)(1
2

)39

On the other hand,

q =
39∑

k=10

(
39
k

)(1
2

)k (
1 − 1

2

)39−k

=
39∑

k=10

(
39
k

)(1
2

)39
.

It follows that q > p.
(c) True. Observe that both events are complements, so they must add up to 1.

Theorem 4.1 (serve-and-rally). To find the probability that player A wins a serve-
and-rally match where A serves first and 2n − 1 rallies are played, where the win
condition is n points, we have

P (A wins match) = P (A wins at least n points in 2n − 1 rallies)

=
2n−1∑
m=n

P (A wins exactly m points in 2n − 1 rallies)

where if pA and pB are the probabilities that A wins when A and B serve
respectively,

P (A wins exactly m points in 2n − 1 rallies)

is equal to the following:

=
n∑

k=1
P (A wins k points he serves) · P (A wins m − k points B serves)

=
n∑

k=1

(
n

k

)
(pA)k(1 − pA)n−k

(
n − 1
m − k

)
(pB)m−k(1 − pB)n−m+k−1

Example 4.26 (ST2131 AY24/25 Sem 1 Lecture 7; serving protocol). A quick badminton
serve-and-rally match is played following the alternative serve protocol, with player A
serving first. The rules are changed so that the match ends when a player wins 2 points
(rallies), and that player is declared the winner of the match.

If player A has a 60% chance of winning a rally when he serves, but only 30% chance of
winning when player B serves, what is the probability of player A winning the match?
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Solution. If we want player A to win the match, it means we want A to win at least 2
points in the first 3 games. That is, we find

P (A wins) = P (A wins 2 rallies in first 3) + P (A wins 3 rallies in first 3)

A natural question is why do we consider the case that A wins 3 rallies, since he would
have already won with 2. This assumption works because no matter how that game ends,
we still put artificial rallies at the back such that we can always assume that 3 rallies
are always played. Since the outcome will always be the same, it does not matter that
we append rallies afterwards.

• Case 1: Suppose A serves 1 and B serves 1. Then, A wins 1 rally he serves, A

wins 1 rally that B serves, and the remaining rally is lost by A, which yields a
probability of (

2
1

)
(0.6)

(
1
1

)
(0.3) (1 − 0.6) .

• Case 2: Suppose A serves 2. Then, A wins the 2 rallies he serves. The remaining
rally is served by B, so A has to lose the game. This yields a probability of(

2
2

)
(0.6)2

(
1
1

)
(1 − 0.3) .

• Case 3: Suppose A wins all 3 rallies. So, A serves 2 rallies with both winning, and
B serves one rally. This yields a probability of (0.6)2 (0.3).

The desired answer is the sum of probabilities in all three cases, which is approximately
0.5. □

4.6 Geometric Distribution

Let X be the random variable denoting the number of Bernoulli trials required to
obtain the first success, where the probability of success is p. Here, the support of X is
the positive integers 1, 2, 3, . . . because the minimum number of tries required to obtain
the first success is 1. As such, it is easy to derive the following formula, which is the
PDF of X:

P (X = k) = pqk−1

We say that X ∼ Geo(p). In certain textbooks, the geometric distribution is defined to
be the number of failures in the Bernoulli trials in order to obtain the first success.
However, we will stick to the former definition.

For a situation to be modelled using a geometric distribution, independent trials are
carried out, the outcome of each trial is deemed either a success or a failure, and the
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probability of a successful outcome p is the same for every trial.

The formula for P (X = k) above captures the intuition that we must fail the first k − 1
times, each with probability q = 1 − p, before succeeding on the kth try. Also, note that
the distribution is called geometric because the successive probabilities p, pq, pq2, . . . form
a geometric sequence with first term p and common ratio q.
Example 4.27. An example where the geometric distribution can be used includes the
number of tries up to and including finding a defective item on a production line.

Proposition 4.9. Suppose X ∼ Geo (p). Then,

E(X) = 1
p

and Var(X) = q

p2 .

Again, we will only prove the formula for expectation.

Proof. By definition,

E(X) =
∞∑

k=1
kpqk−1.

Suppose f(q) = qk. Then, f ′(q) = kqk−1. Hence,
∞∑

k=1
kpqk−1 = p

∞∑
k=1

d

dq

(
qk
)

= p
d

dq

( ∞∑
k=1

qk

)
= p

d

dq

(
q

1 − q

)
= 1

p
.

This proof uses the technique of using a derivative to replace the summand.

Example 4.28 (Ross p. 199 Question 20). Show that if X is a geometric random variable
with parameter p, then

E

( 1
X

)
= −p log p

1 − p
.

Solution. We have

E

( 1
X

)
=

∞∑
k=1

1
k

· p (1 − p)k−1 = p

1 − p

∞∑
k=1

(1 − p)k

k
.

The trick is to recall that this resembles the series expansion of ln (1 + x) but with a
slight twist. From

ln (1 + x) = x − x2

2 + x3

3 − x4

4 + . . . ,

we have
ln (1 − x) = −

(
x + x2

2 + x3

3 + x4

4 + . . .

)
.

Setting x = q and then recognising that q = 1 − p yields the desired result. □
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What makes the geometric distribution especially intriguing is its memoryless
property. Say we have a biased coin with a probability p of landing heads. If we have
already flipped 3 tails without success, the probability of needing 5 more flips to get a
head is exactly the same as it was at the very start — past failures do not change the
game.

Definition 4.8 (memorylessness). A probability distribution is said to have a
memoryless property if the probability of some future event occurring is not
affected by the occurrence of past events. If a random variable X satisfies the
memoryless property, then for m, n ∈ N,

P (X > m + n | X > m) = P (X > n).

In particular, the geometric distribution is the only distribution that exhibits the
memoryless property. For the continuous counterpart, the exponential distribution is
the only one which exhibits memorylessness. We will discuss this in due course. It is
easy to verify that the geometric distribution has the memoryless property but to prove
that it is the only one, it is slightly more complicated.

Proof. Suppose X is a random variable which satisfies the memoryless property. Then,

P (X > m + n|X > m) = P (X > n).

We apply the definition of conditional probability to the left side. Hence,

P (X > m + n) = P (X > m)P (X > n).

Note that P (X > 0) = 1 since the support of X is the positive integers. Then,

P (X > 1) = [P (X > 0)]2 = 1
P (X > 2) = P (X > 1)P (X > 1) = [P (X > 1)]2

P (X > 3) = P (X > 1)P (X > 2) = [P (X > 1)]3

It is clear that
P (X > k) = [P (X > 1)]k.

To compute P (X = k), we use the formula P (X = k) = P (X > k − 1) − P (X > k) to
get

P (X = k) = [P (X > 1)]k−1 − [P (X > 1)]k

= [P (X > 1)]k−1[1 − P (X > 1)]
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Setting p = 1 − P (X > 1), we obtain

P (X = k) = p(1 − p)k−1,

which is indeed the PDF of the geometric distribution with parameter p.

In the above proof, note that q = P (X > 1), which is clear because we claim that p

is the probability of success, or in relation to attempts, p is the probability of attaining
a success on the first try. That is, p = P (X = 1).

To summarise,

Random Variable PDF Parameter(s) E(X) Var(X)

Geo(p) pqk−1 p 1
p

q
p2

Previously, we claimed that the sum of two independent binomial random variables
with the same probability of success p will still follow a binomial distribution. However,
if we have the sum of two geometric distributions (namely X and Y ) with the same
probability of success p, then X + Y actually follows a negative binomial distribution!
That is, X + Y ∼ NB(2, p).

Proposition 4.10 (additivity). If X, Y ∼ Geo (p), then X + Y ∼ NB (2, p).

Proof. Note that X + Y takes values 2, 3, . . .. We set k ≥ 2. Then,

P (X + Y = k) =
k−1∑
i=1

P ({X = i} ∩ {Y = k − i})

=
k−1∑
i=1

P (X = i) P (Y = k − i)

=
k−1∑
i=1

pqi−1pqk−i−1

= (k − 1) p2qk−2

=
(

k − 1
1

)
p2qk−2
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which is the PDF of a negative binomial random variable with parameters (2, p). We
will formally introduce this distribution in due course, but this is just to illustrate that
the sum of identical distributions with the same parameters may not result in the new
distribution to be of the same kind as the original.

One of the random variables which we would encounter under discrete random
variables is the Poisson distribution. Later, we will see that the sum of two Poisson
random variables also follows a Poisson distribution.
Example 4.29 (ST2131 AY24/25 Sem 1 Lecture 6). A coin is tossed repeatedly. The
outcomes of the tosses are assumed to be independent. The coin is biased with each
toss showing head with probability 60%. What is the probability of getting a run of 3
consecutive heads before a run of 2 consecutive tails?

Solution. Observe that this process is memoryless. That is, if we get some string, say
HHT, then everything is invalidated, since we need 3 heads in a row. Hence, it suffices
to only keep track of the effective states. □

Example 4.30 (coupon collector’s problem). The coupon collector’s problem describes
“collect all coupons and win” contests. It asks the following question: if each box of a
brand of cereals contains a coupon, and there are n different types of coupons, what is
the probability that more than t boxes need to be bought to collect all n coupons?

Solution. By letting T be the number of draws needed to collect all n coupons and ti be
the time to collect the ith coupon after i − 1 coupons have been collected and regarding
them as random variables, then the probability of collecting a new coupon, denoted by
pi, can be written as

pi = n − i + 1
n

.

To see why, the ith coupon must be different from all the previous collected. The
probability of obtaining a coupon that is of the same type as any one of the i coupons
previously collected is i−1

n . Hence,

pi = 1 − i − 1
n

and the result follows. □

We remark that ti follows a geometric distribution with parameter pi and T = t1 +
t2 + . . . + tn. We shall prove two interesting results, which are expressions for E(T ) and
Var(T ), and they are related to the harmonic numbers and the famous Basel problem
respectively:
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Theorem 4.2.
E(T ) = nHn and Var(T ) <

n2π2

6 ,

where Hn is the nth harmonic number.

For Var(T ), it is rather interesting that we do not have an explicit formula but only
an upper bound for it. We shall first prove the result for expectation.

Proof. Assume that the ti’s are independent. Then,

E(T )E(t1 + t2 + . . . + tn) = E(t1) + E(t2) + . . . + E(tn)

which is equal to

n∑
i=1

n

n − i + 1 = n
n∑

i=1

1
n − i + 1 = n

n∑
i=1

1
i

= nHn.

Next, we prove the result for variance.

Proof.

Var(T ) = Var(t1 + t2 + . . . + tn)
= Var(t1) + Var(t2) + . . . + Var(tn)

=
n∑

i=1

1 − pi

p2
i

= n
n∑

i=1

i − 1
(n − i + 1)2

The Basel problem, proved by Leonhard Euler in 1734, states that

∞∑
i=1

1
i2 = π2

6 .

Thus, it suffices to prove

n∑
i=1

i − 1
(n − i + 1)2 <

n∑
i=1

n

(n − i + 1)2 <
∞∑

i=1

n

i2 = nπ2

6 .

This is true because i − 1 < n if and only if i < n + 1. Hence, the result follows.
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At this juncture, we give a motivation for studying the distribution of the minimum
or maximum of geometric random variables. The geometric distribution naturally arises
whenever we model the number of independent Bernoulli trials (each with success
probability p) needed until the first success. Its memoryless property and simple form
make it a canonical example of a waiting-time distribution in discrete time. However,
in many practical situations we observe not just one such waiting time, but several
in parallel or in repetition, and we care about extremes. For example, say we have a
store with n identical checkout counters. Time is slotted, and in each slot, each cashier
independently sees a customer with probability p. For cashier i, the number of slots until
their first customer X follows a geometric distribution with parameter p. How long do
we have to wait till any cashier gets their first customer? In other words, what is the
distribution of min {X1, . . . , Xn}?

Proposition 4.11 (distribution of the minimum). If Xi ∼ Geo (pi) for 1 ≤ i ≤ n and
the Xi’s are independent, then

W = min {X1, . . . , Xn} ∼ Geo
(

1 −
n∏

i=1
(1 − pi)

)
.

Proof. Note that P (W ≤ r) = 1 − P (W > r). By definition of the minimum, W =
min {X1, . . . , Xn} > r implies that Xi > r for all 1 ≤ i ≤ n. Hence,

P (W ≤ r) = 1 − P (X1 > r) . . . P (Xn > r) .

Since P (Xi > r) = (1 − pi)r, it follows that

P (W ≤ r) = 1 − (1 − pi)r . . . (1 − pn)r = 1 −
(

n∏
i=1

(1 − pi)
)r

.

Hence, W follows a geometric distribution with parameter 1 −
∏n

i=1 (1 − pi).

Corollary 4.1. For the case where the Xi’s are also identically distributed, i.e.
Xi ∼ Geo (p) for all 1 ≤ i ≤ n, then

W = min {X1, . . . , Xn} ∼ Geo (1 − (1 − p)n) .



MA2116 ST2131 PROBABILITY Page 85 of 156

Proposition 4.12 (distribution of the maximum). If Xi ∼ Geo (pi) for 1 ≤ i ≤ n and
the Xi’s are independent, then defining M = max {X1, . . . , Xn}, we have

P (M = r) =
n∏

i=1
(1 − (1 − pi)r) −

n∏
i=1

(
1 − (1 − pi)r−1

)
.

Proof. The proof is similar to that of Proposition 4.11. Note that

P (M ≤ r) = P (X1 ≤ r) . . . P (Xn ≤ r) = (1 − qr
1) . . . (1 − qr

n) =
n∏

i=1
(1 − qr

i ) .

By using the formula P (M = r) = P (M ≤ r) − P (M ≤ r − 1), the result follows.

4.7 Negative Binomial Distribution

Define the random variable X to be the number of Bernoulli trials, with parameter
p, required to obtain r successes. Here, the support of X is k ≥ r and we say that the
distribution is negative binomial with parameters r and p. We write X ∼ NB(r, p). The
PDF of a negative binomial random variable is

P (X = k) =
(

k − 1
r − 1

)
prqk−r.

We can think of the negative binomial distribution as such: for the first k − 1 trials, we
wish to have r − 1 successes. As such, there are k − r failures. Then, we ensure that the
kth trial is a success and we are done.

The geometric distribution is a special case of the negative binomial distribution. We can
view the geometric distribution Geo(p) as NB(1, p) since for the geometric distribution,
we are interested in the number of tries up to and including the first success.

Proposition 4.13. The expectation and variance of the negative binomial distri-
bution X ∼ NB(r, p) are

E(X) = r

p
and Var(X) = rq

p2 .

To summarise,

Random Variable PDF Parameter(s) E(X) Var(X)

NB(r, p)
(k−1

r−1
)
prqk−r r and p r

p
rq
p2
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We move on to discuss Banach’s matchbox problem. This problem is named after the
Mathematician Stefan Banach, who is known for the Banach-Tarski paradox, a problem
encompassing the elements of Set Theory and Geometry (Vsauce made a video on this
in 2015 so do check it out if you are interested).
Example 4.31 (Banach’s matchbox problem). We state Banach’s matchbox problem.
Suppose a Mathematician carries two matchboxes at all times — one in his left pocket
and one in his right. Each time he needs a match, he is equally likely to take it from
either pocket. Suppose he reaches into his pocket and discovers for the first time that the
box picked is empty. If it is assumed that each of the matchboxes originally contained
N matches, what is the probability that there are exactly k matches in the other box?

Solution. Let E be the event that the mathematician first discovers that the right pocket
matchbox is empty and there are k matches in the left pocket matchbox at that instant.
E will occur if and only if the (N + 1)th choice of the right pocket matchbox is made at
the (N + 1 + N − i)th trial. We see that this setup is essentially using a negative binomial
distribution model with parameters r = N + 1 and p = 1/2. Here, k = 2N − i + 1. As
such,

P (E) =
(

2N − i

N

)(1
2

)2N−i+1
.

As there is an equal probability that the left pocket matchbox is the first to be discovered
to be empty and there are k matches in the right pocket matchbox at that time, the
desired result is simply 2P (E), or(

2N − i

N

)(1
2

)2N−i

.

□

4.8 Poisson Distribution

A random variable X is said to follow a Poisson distribution with parameter λ if the
support of X is the non-negative integers 0, 1, 2, . . . with probabilities

P (X = k) = e−λλk

k! .

We say that X ∼ Po(λ).

Some examples where the Poisson distribution can be used are as follows. Take note
that time plays a critical role when defining a Poisson random variable.
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Example 4.32 (calls per hour). Call centers use the Poisson distribution to model the
number of expected calls per hour that they’ll receive so they know how many call center
reps to keep on staff. For example, suppose a given call center receives 10 calls per hour.
Then, X ∼ Po(10).
Example 4.33 (arrivals). Restaurants use the Poisson distribution to model the number
of expected customers that will arrive at the restaurant per day. Suppose a restaurant
receives an average of 100 customers per day. Then, X ∼ Po(100).
Example 4.34 (Ross p. 199 Question 14). On average, 5.2 hurricanes hit a certain region
in a year. What is the probability that there will be 3 or fewer hurricanes hitting this
year?

Solution. Let X denote the number of times a hurricane hits in a year. So, X ∼ Po(5.2).
Hence, P (X ≤ 3) = 0.238. □

Example 4.35 (Ross p. 196 Question 17). Let X be a Poisson random variable
with parameter λ. Show that P (X = i) increases monotonically and then decreases
monotonically as i increases, reaching its maximum when i is the largest integer not
exceeding λ.
Example 4.36 (Ross p. 196 Question 18). Let X be a Poisson random variable with
parameter λ. Show that

P (X is even) = 1
2
(
1 + e2λ

)
.

Proposition 4.14. If X ∼ Po(λ), then

E(X) = λ and Var(X) = λ.

We shall prove the result for expectation.

Proof.

E (X) =
∞∑

k=0
k · e−λλk

k! =
∞∑

k=1
k · e−λλk

k! = λe−λ
∞∑

k=1

λk−1

(k − 1)! = λe−λ · eλ = λ

Example 4.37. The random variable X follows a Poisson distribution with parameter
λ. Find E[X2] and E[X3].
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Solution. Recall that Var (X) = E
(
X2)− (E (X))2, and for any Poisson random vari-

able with parameter λ, it has mean λ and variance λ. Hence, E
(
X2) = λ + λ2.

Next,

E
(
X3
)

=
∞∑

k=0
k3 · e−λλk

k! = λe−λ
∞∑

k=1
k2 · λk−1

(k − 1)! = λe−λ
∞∑

r=0
(r + 1)2 · λr

r!

Note that for
∞∑

r=0
(r + 1)2 · λr

r! ,

we consider the standard series
∞∑

r=0

λr

r! = eλ
∞∑

r=0
r

λr

r! = λeλ
∞∑

r=0
r(r − 1)λr

r! = λ2eλ.

Hence, E
(
X3) = λ3 + 3λ2 + λ. □

Example 4.38 (Ross p. 199 Question 15). The number of eggs laid on a tree leaf by an
insect of a certain type is a Poisson random variable with parameter λ. However, such
a random variable can be observed only if it is positive since if it is 0, then we cannot
know that such an insect was on the leaf. If we let Y denote the observed number of
eggs, then

P (Y = i) = P (X = i | X > 0)

where X is Poisson with parameter λ. Find E (Y ).

Solution. We have

P (Y = i) = P (X = i where i ∈ N)
P (X > 0) = P (X = i where i ∈ N)

P (X > 0) .

Since X ∼ Po (λ), then
P (X > 0) = 1 − e−λ.

Also,

P (X = i where i ∈ N) = e−λλi

i! .

Hence,

P (Y = i) = e−λλi

i! (1 − e−λ) .

Hence,

E (Y ) =
∞∑

i=1
i · e−λλi

i! (1 − e−λ) = λe−λ

1 − e−λ

∞∑
i=1

λi−1

(i − 1)! = λe−λ

1 − e−λ

∞∑
i=0

λi

i! = λ

1 − e−λ
.

□
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To summarise,

Random Variable PDF Parameter(s) E(X) Var(X)

Po(λ) e−λλk

k! λ λ λ

Example 4.39 (Ross p. 196 Question 20). Show that if X is a Poisson random variable
with parameter λ, then the nth moment of X admits the formula

E (Xn) = λE
[
(X + 1)n−1

]
.

Now, use this result to compute E
(
X3).

Proposition 4.15 (additivity). The additivity property of the Poisson distribution
states that if X and Y are independent Poisson random variables where X ∼ Po(λ)
and Y ∼ Po(µ), then X + Y ∼ Po(λ + µ).

Proof.

P (X + Y = n) =
n∑

k=0
P ({X = k} ∩ {Y = n − k})

=
n∑

k=0
P (X = k) P (Y = n − k) since X and Y are independent

=
n∑

k=0

e−λλk

k! ·e
−µµn−k

(n − k)!

= e−(λ+µ)µn

n!

n∑
k=0

n!
k! (n − k)!

(
λ

µ

)k

= e−(λ+µ)µn

n!

n∑
k=0

(
n

k

)(
λ

µ

)k

= e−(λ+µ)µn

n!

(
1 + λ

µ

)n

= e−(λ+µ)(λ + µ)n

n!

Even though X + Y follows a Poisson distribution, X − Y actually does not follow a
Poisson distribution. In general, the difference of two Poisson Random Variables is said
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to follow a Skellam distribution. Its probability mass function is rather complicated to
compute as it involves the modified Bessel function of the first kind (related to differential
equations).
Example 4.40 (ST2131 AY24/25 Sem 1 Lecture 16). A sample of radioactive substance is
observed to emit 0.3 α-particles per second, on average. A sample of another substance
is observed to emit 0.5 α-particles per second, on average. The two samples are now
combined.

(a) What is the probability that at least three α-particles are emitted from the
combined sample in a ten second interval?

(b) What is the longest time interval we need to wait in order that the probability of
the combined sample emitting any α-particle in that time interval is > 90%?

Solution.
(a) This is a Poisson process. Denote the first substance with M (t) ∼ Po (0.3t))

and the second substance with N (t) ∼ Po (0.5t). Then X(t) = M(t) + N(t) ∼
Po(0.3t + 0.5t) = Po(0.8t). So, P (X(10) > 3) = 1 − P (X(10) = 0) − P (X(10) = 1) −
P (X(10) = 2) which is equal to

1 − e−8
(

1 + 8 + 82

2!

)
.

(b) Let T be this said time interval. We have

P (X (T ) ≥ 1) > 0.9 if and only if P (X (T ) = 0) < 0.1

So, e−0.8T < 0.1, which implies T > ln 10/0.8 as desired.

Proposition 4.16 (conditional of Poisson distribution is binomial). If X and Y are
independent Poisson random variables such that X ∼ Po (λ) and Y ∼ Po (µ), then

P (X = k | X + Y = n) = P (J = k) ,

where
J ∼ B

(
n,

λ

λ + µ

)
.

Proof.

P (X = k | X + Y = n) = P ({X = k} ∩ {Y = n − k})
P (X + Y = n)

= P (X = k) P (Y = n − k)
P (X + Y = n) since X and Y are independent
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By applying the respective density formulae, the above simplifies to

e−λλk

k! · e−µµn−k

(n − k)! · n!
e−(λ+µ)(λ + µ)n = µn

(λ + µ)n ·
(

n

k

)(
λ

µ

)k

=
(

n

k

)(
λ

λ + µ

)k( µ

λ + µ

)n−k

which is indeed the probability mass function of a binomial random variable with n tries
and probability of success λ/ (λ + µ).

This is from a past year A-Level Mathematics Special Paper dated back to 2004. It is
the equivalent of the current H3 Mathematics.
Example 4.41 (Special Paper 2004). Fish comes to the surface of a stretch of river
randomly and independently at a mean rate of 8 per minute. When a fish comes to the
surface, the probability that it catches a fly is 0.6. If S is the number of flies caught in
a randomly chosen minute, show that

P (S = s) =
∞∑

r=s

e−88r

r!

(
r

s

)
(0.6)s(0.4)r−s

and deduce that S follows a Poisson distribution.

Solution. Let R be the random variable denoting the number of fish coming to the surface
in a minute. The probability that r fish come to the surface in a randomly chosen minute
is

P (R = r) = e−88r

r! .

The probability that s flies are caught during a period of a randomly chosen minute in
which r fish come to the surface, where s ≤ r, is

e−88r

r!

(
r

s

)
(0.6)s(0.4)r−s.

Hence,

P (S = s) = P ({R = s} ∩ {S = s}) + P ({R = s + 1} ∩ {S = s}) + . . .

=
∞∑

r=s

P ({S = s} ∩ {R = r})

=
∞∑

r=s

P (R = r) P (S = s|R = r)

=
∞∑

r=s

e−88r

r!

(
r

s

)
(0.6)s(0.4)r−s
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To prove that S follows a Poisson distribution, we manipulate with the given probability
mass function formula.

P (S = s) =
∞∑

r=s

e−88r

r!

(
r

s

)
(0.6)s(0.4)r−s

= e−8(1.5)s

s!

∞∑
r=s

(3.2)r

(r − s)!

= e−8(1.5)s

s!

∞∑
j=0

(3.2)j+s

j! by setting r − s = j

= e−8(4.8)s

s!

∞∑
j=0

(3.2)j

j!

= e−4.8(4.8)s

s!
This asserts that S indeed follows a Poisson distribution with parameter 4.8. That is,
S ∼ Po(4.8). □

Example 4.42 (Ross p. 197 Question 26). Suppose that the number of events that occur
in a specified time is a Poisson random variable with parameter λ. If each event is
occurred with probability p, independently of every other count, show that the number
of events counted is a Poisson random variable with parameter λp.

Solution. Let the number of events be N . Then, N ∼ Po (λ). Each event is counted
with probability p. Let M be the number of events counted. We wish to show that
M ∼ Po (λp). Condition on N = n. Suppose n events have occurred. Note that

M | N = n ∼ Binomial (n, p) .

Since
P (M = k | N = n) =

(
n

k

)
pk (1 − p)n−k ,

then

P (M = k) =
∞∑

n=k

P (M = k | N = n) P (N = n) =
∞∑

n=k

(
n

k

)
pk (1 − p)n−k · e−λλn

n!

which simplifies to

e−λ
∞∑

n=k

1
k! (n − k)! (λp)k (λ (1 − p))n−k = e−λ (λp)k

k!

∞∑
n=k

(λ (1 − p))n−k

(n − k)!

= e−λ (λp)k

k! · eλ(1−p)

= e−λp (λp)k

k!
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which is precisely a Poisson random variable with parameter λp. □

The Poisson distribution has a variety of applications in diverse areas.

Theorem 4.3 (law of raw events). The Poisson distribution can be used as an
approximation for a binomial random variable with parameters (n, p) when n is
large and p is small enough so that np is of moderate size.

Proof. Suppose X ∼ B(n, p) and let λ = np. Then, by first using the binomial PDF
formula,

P (X = k) = n!
k!(n − k)!p

kqn−k

= n!
k!(n − k)!

(
λ

n

)k (
1 − λ

n

)n−k

= n(n − 1)(n − 2) . . . (n − k + 1)
nk

· λk

k!

(
1 − λ

n

)n−k

For large n and a moderate-sized λ,(
1 − λ

n

)n

≈ e−λ
(

1 − λ

n

)k

≈ 1 n(n − 1)(n − 2) . . . (n − k + 1)
nk

≈ 1.

Hence, we conclude that

P (X = k) ≈ e−λλk

k! .

Example 4.43 (Ross p. 192 Question 63). The number of times that a person contracts a
cold in a given year is a Poisson random variable with parameter λ = 5. Suppose that a
new wonder drug (based on large quantities of vitamin C) has just been marketed that
reduces the Poisson parameter to λ = 3 for 75 percent of the population. For the other
25 percent of the population, the drug has no appreciable effect on colds. If an individual
tries the drug for a year and has 2 colds in that time, how likely is it that the drug is
beneficial for him or her?

Solution. Let X denote the number of times an individual who tries the drugs has a
cold. Let B be the event the drug is beneficial and N be the event the drug has no effect
such that we have X ∼ Po(3) with P (B) = 0.75 and X ∼ Po(5) with P (N) = 0.25. By
Bayes’ theorem and the law of total probability,

P (B | X = 2) = 0.889.

□
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Example 4.44 (Ross p. 192 Question 59). How many people are needed so that the
probability that at least one of them has the same birthday as you is greater than 1

2?

Solution. Assume that the birthdays are independent and uniform over 365 days
(ignoring leap years). Let n be the sample size and consider the probability that none
shares the same birthday as me, which is(364

365

)n

.

As such, we want

1 −
(364

365

)
>

1
2 so n >

ln 1
2

ln 364
365

= 252.65

As such n = 253 + 1 = 254 (including myself). □

4.9 Hypergeometric Distribution

The hypergeometric distribution describes the probability of k successes in n draws,
without replacement, from a finite population of size N that contains K objects with
that feature, wherein each draw is either a success or a failure. In contrast, the binomial
distribution describes the probability of k successes in n draws with replacement.

Definition 4.9 (hypergeometric distribution). If a random variable follows a
hypergeometric distribution with parameters N, K and n, then

P (X = k) =
(K

k

)(N−K
n−k

)(N
n

) .

We say that X ∼ Hypergeometric(N, K, n).

Proposition 4.17. The sum of probabilities is indeed equal to 1. That is,

∑
0≤k≤n

(K
k

)(N−K
n−k

)(N
n

) = 1.

Proof. Use Vandermonde’s identity (Theorem 1.4).

Example 4.45. Michael has a box of 8 blue balls and 6 red balls. He draws 3 balls from
the box without replacement. Calculate the probability that 2 balls are red.
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Solution. We can use the probability mass function formula of a hypergeometric
distribution. Note that N = 14, K = 6, n = 3 and k = 2. Substituting everything into
the formula yields

P (X = 2) =
(6

2
)(8

1
)(14

3
) = 30

91 .

However, we can think of it from an O-Level student’s perspective. I believe questions
of this type were covered in Secondary Four. We have the following cases: RRB, RBR

and BRR. For the first case, the probability is

6
14 × 5

13 × 8
12 = 10

91 .

Observe that the probabilities for the other two cases are the same, namely

6
14 × 8

13 × 5
12 and 8

14 × 6
13 × 5

12

respectively. Hence, the answer we obtain is 30
91 too, yielding the same conclusion as

before. So, it appears that the hypergeometric distribution is not something exactly
new! □

Our O-Level method actually has a potential limitation, which is that if n and k are
large, the total number of permutations will also be large and many cases will arise†.

Proposition 4.18. The expectation and variance of a hypergeometric random
variable are

E(X) = nK

N
and Var(X) = nK(N − K)(N − n)

N2(N − 1) .

To summarise,

Random Variable PDF Parameter(s) E(X) Var(X)

Hypergeometric(N, K, n) (K
k )(N−K

n−k )
(N

n) N, K and n nK
N

nK(N−K)(N−n)
N2(N−1)

To summarise the main components of discrete random variables,
†When I first wrote this set of notes in 2022, I had an analogy regarding the number of COVID-19

cases. I mentioned that the ‘number of cases will arise’ just like how the number of COVID-19 cases
there are as of now (back then) when I’m writing this which is 4 July 2022.
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Random Variable PDF Parameter(s) E(X) Var(X)

Bernoulli(p) X =
{

1 if it is a success
0 if it is a failure

p p pq

B(n, p)
(

n
k

)
pkqn−k n and p np npq

Geo(p) pqk−1 p 1
p

q
p2

NB(r, p)
(

k−1
r−1
)
prqk−r r and p r

p
rq
p2

Po(λ) e−λλk

k! λ λ λ

Hypergeometric(N, K, n) (K
k )(N−K

n−k )
(N

n) N, K and n nK
N

nK(N−K)(N−n)
N2(N−1)
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Chapter 5

Continuous Random Variables
In discrete random variables, our support, or the set of possible values, is countable. The
support can be finite (i.e. binomial distribution) or infinite (i.e. geometric distribution).
In this section, we wish to study the continuous counterpart, and the property of such
random variables is that their set of possible values is uncountable.

In this case, elements like time, a person’s height etc. come into play. For example,
the lifetime of an electrical appliance might follow an exponential distribution and
the amount of rainfall obtained in a region during the dry season might be modelled
by a continuous uniform distribution. Such scenarios are examples which make use of
continuous random variables.

Definition 5.1 (continuous random variable). We say that X is a continuous random
variable if there exists a non-negative function fX , defined for all real x ∈ R, having
the property that for any set B of real numbers,

P (X ∈ B) =
∫

B
fX(x) dx.

The function fX is called the PDF of X.

Recall that PDF stands for probability density function. By letting B = [a, b], we
obtain

P (a ≤ X ≤ b) =
∫ b

a
fX(x) dx.

Definition 5.2 (cumulative distribution function). We define the cumulative distri-
bution function, or CDF, of X by

FX(x) = P (X ≤ x) for x ∈ R.

Note that the definition of the distribution function is the same for both discrete and
continuous random variables. Therefore, in the context of continuous random variables,

FX(x) =
∫ x

−∞
fX(t) dt.

By the fundamental theorem of calculus,

F ′
X(x) = fX(x).
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Observe that in continuous random variables, so far, we have been dealing with integrals.
However, for discrete random variables, we only talked about sums. This is not surprising
because the extension from discrete to continuous random variables involves Riemann
integration. To further justify this, each partition gets finer and hence, the limit of the
Riemann sums is equivalent to an integral.

Going back, the PDF is regarded as the derivative of the CDF, or the cumulative
distribution function. More intuitively, we have

P

(
x − ε

2 ≤ X ≤ x + ε

2

)
=
∫ x+ ε

2

x− ε
2

fX(x) dx ≈ εf(x).

This occurs when ε is small and when f is continuous at x. The probability that X will
be contained in an interval of length ε around the point x is approximately εf(x). Hence,
we see that f(x) is a measure of how likely that the random variable would be near x.

Proposition 5.1. We establish some properties in relation to continuous random
variables.

(i) P (X = x) = 0
(ii) The CDF, that is FX , is continuous

(iii) For any a, b ∈ R,

P (a ≤ X ≤ b) = P (a < X ≤ b)
= P (a ≤ X < b)
= P (a < X < b)

(iv) Since the sum of probabilities is equal to 1, then∫ ∞

−∞
f(x) dx = 1

5.1 Expectation and Variance

We shall write fX(x) simply as f(x) for convenience sake.

Definition 5.3 (expectation and variance). Let X be a continuous random variable
with PDF f(x). Then,

E(X) =
∫ ∞

−∞
xf(x) dx and Var(X) =

∫ ∞

−∞
[x − E(X)]2f(x) dx.
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Note that these are analogous to the formulae for expectation and variance for the
discrete counterpart, just that for continuous random variables, the sum is changed
to an integral. We can manipulate the expression for variance till it resembles that of
E(X2) − [E(X)]2. That is,

Var(X) =
∫ ∞

−∞
x2f(x) dx −

(∫ ∞

−∞
xf(x) dx

)2
.

The linearity properties for expectation and variance also apply here. That is, E(aX ±
b) = aE(X) ± b and Var(aX ± b) = a2 Var(X).

If X is a continuous random variable with PDF f(x), then for any real-valued function
g,

E[g(X)] =
∫ ∞

−∞
f(x)g(x) dx.

5.2 Continuous Uniform Distribution

Definition 5.4 (continuous uniform distribution). A random variable X is uniformly
distributed over the interval (0, 1) if its PDF is

f(x) =

1 if 0 < x < 1;
0 otherwise.

We denote it by X ∼ U(0, 1). In general, for a < b, we say that a random variable
X is uniformly distributed over the interval (a, b) if its PDF is

f(x) =


1

b−a if a < x < b;
0 otherwise.

This is denoted by X ∼ U(a, b).

Theorem 5.1 (triangular distribution and Irwin-Hall distribution). The sum of
two independent, equally distributed, uniform distributions yields a symmetric
triangular distribution. In general, if we have n independent and identically
distributed (i.i.d.) uniform distributions U(0, 1), the new distribution is said to
follow an Irwin-Hall distribution.
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Proposition 5.2. The expectation and variance of a uniform distribution X ∼
U(a, b) are

E(X) = a + b

2 and Var(X) = (b − a)2

12 .

One can prove the formula for expectation using integration, but observe since f(x)
is a constant, then the expectation should be the x-coordinate of the mean (to be more
precise, arithmetic mean) of a and b.

We shall prove the formula for variance only.

Proof.

E(X2) =
∫ b

a

x2

b − a
dx = 1

b − a

∫ b

a
x2 dx = b3 − a3

b − a
= a2 + ab + b2

Hence,

Var(X) = a2 + ab + b2 −
(

a + b

2

)2
= (b − a)2

12 .

Example 5.1 (ST2131 AY24/25 Sem 1 Lecture 9). A point is chosen at random on a
line segment of length 1, thus dividing the line segment into two pieces. What is the
probability that the longer piece is at least four times as long as the shorter piece?

Solution. Suppose the shorter segment is of length x, so x ≤ 1/5. This means 1 − x ≥
4/5. Since the line segment is symmetrical, the desired probability is 2 · (1/5 ÷ 4/5) =
2/5. □

Example 5.2 (ST2131 AY24/25 Sem 1 Lecture 10; triangle inequality). Two points are
chosen at random on a line segment of length 1, thus dividing the line segment into
three pieces. What is the probability that we can form a triangle?

Solution. Suppose we cut the line segment at points x and y, where x < y. Then, we have
three pieces of length x, y, 1 − y. By the triangle inequality, we must have the following:

x + y − x > 1 − y and x + 1 − y > y − x and y − x + 1 − y > x

Upon simplification, we obtain

y >
1
2 and x <

1
2 and y > x + 1

2 .
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By symmetry, suppose we had y < x instead. Then, all the inequalities will still hold
via substitution. By plotting a graph for both cases with y against x, we see that we
can translate the problem to be such that if we pick a point (x, y) ∈ [0, 1]2, what is the
probability that it falls in the regions satisfying both inequalities?

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

One can deduce that the required probability is 1/4. □

Example 5.3 (ST2131 AY24/25 Sem 1 Lecture 10). Trains heading to destination A arrive
at the station at 15 minutes interval starting at 7:00 am. Trains heading to destination
B arrive at the station at 25 minutes interval starting at 7:05 am.

A man arrives at the station at a time uniformly distributed between 7:00 am and
8:00 am, and takes the first train that arrives. What is the probability that he goes to
destination A?

A woman arrives at the station at a time uniformly distributed between 7:10 am and
8:10 am, and takes the first train that arrives. What is the probability that she goes to
destination A?

Solution. Consider the following diagram:

A
B

070
0

070
5

071
5

073
0

074
5

075
5

080
0

Then, the intervals that he goes to A is the intervals that he definitely goes to A, plus the
interval that both A and B arrive at the same time (7.15–7.30), with half the probability
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of choosing the trains. That is,

P (man goes to destination A) = 10 + 15 + 5
60 + 1

2 · 15
60 = 1

3 + 1
8 .

Similarly for the woman,

A
B

071
0

071
5

073
0

074
5

075
5

080
0

081
0

and we can calculate the probability in a similar fashion. We will get 25/60 + 1/8. □

Example 5.4 (Ross p. 245 Question 29). Let X be a continuous random variable having
cumulative distribution function F . Assume that F is strictly increasing. Find the
distribution of Y = F (X).

Solution. We have

P (Y ≤ y) = P (F (X) ≤ y) = P
(
X ≤ F −1 (y)

)
since F is strictly increasing.

So,

P
(
X ≤ F −1 (y)

)
=
∫ F −1(y)

0
f (x) dx = y − F (0) .

As such, P (Y ≤ y) = y so fY (y) = 1, implying that Y ∼ U (0, 1). □

To summarise,

Random Variable PDF Parameter(s) E(X) Var(X)

U(a, b) 1
b−a a and b a+b

2
(b−a)2

12

5.3 Normal Distribution

Definition 5.5. A random variable X is normally distributed with parameters µ

and σ, where µ is the mean and σ2 is the variance, if its PDF is

f(x) = 1
σ

√
2π

e− (x−µ)2

2σ2 ,

where x ∈ R. We say that X ∼ N(µ, σ2).
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Even though the PDF formula looks very complicated, one can verify that the integral
from −∞ to ∞ is indeed 1 (i.e. sum of probabilities is 1). To the interested, this uses
a well-known result, known as the Gaussian integral. I will attach the proof here, but
one needs to have some pre-requisites regarding matrices and Multivariable Calculus to
understand the proof.

Theorem 5.2 (Gaussian integral).∫ ∞

−∞
e−x2

dx =
√

π

Proof. Let f(x, y) be a function defined on R = [a, b] × [c, d]. The integral∫ d

c
f (x, y) dy

means that x is regarded as a constant and f(x, y) is integrated with respect to y from
y = c to y = d. Thus, this integral is a function of x and we can integrate it with respect
to x from x = a to x = b. The resulting integral∫ b

a

∫ d

c
f (x, y) dydx

is known as an iterated integral.

The Fubini theorem allows the order of integration to be changed in certain iterated
integrals. It states that if f(x, y) is absolutely convergent and continuous on R =
[a, b] × [c, d], then∫∫

R
f (x, y) dA =

∫ b

a

∫ d

c
f (x, y) dydx =

∫ d

c

∫ b

a
f (x, y) dxdy.

As mentioned earlier, for Fubini’s theorem to be applied, f must be an absolutely
convergent integral. Similar to the absolute convergence of series, if an integral is
absolutely convergent, then ∫

R
|f (x)| dx < ∞.

One of the ways to evaluate the famous Gaussian integral, which is∫ ∞

−∞
e−x2

dx =
√

π,

involves Fubini’s theorem.



MA2116 ST2131 PROBABILITY Page 104 of 156

We will use polar coordinates. Let I be the original integral. Then,

I =
∫ ∞

−∞
e−x2

dx =
∫ ∞

−∞
e−y2

dy

I2 =
(∫ ∞

−∞
e−x2

dx

)(∫ ∞

−∞
e−y2

dy

)
=
∫ ∞

−∞

∫ ∞

−∞
e−x2

e−y2
dxdy by Fubini’s Theorem

=
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dxdy

We will do a change of variables from the Cartesian world to the polar world. We will
establish the following result

dxdy = rdrdθ

using the Jacobian of a suitable matrix. That is,

J =
[

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

]
.

Since dxdy = det (J) drdθ, then the result follows. Hence, the integral can be transformed
to

I2 =
∫ 2π

0

∫ ∞

0
re−r2

drdθ = π.

We conclude that I =
√

π.

The central limit theorem, or CLT, as well as the de Moivre-Laplace theorem, will
be covered in due course. The central limit theorem should be no stranger to you if you
still recall it from H2 Mathematics.

Proposition 5.3. The expectation and variance of a normal random variable X ∼
N(µ, σ2) are

E(X) = µ and Var(X) = σ2.

One interesting property is that the mean, median and mode of a normal random
variable are the same, which is µ.

To summarise,

Random Variable PDF Parameter(s) E(X) Var(X)

N(µ, σ2) 1
σ

√
2π

e− (x−µ)2

2σ2 µ and σ µ σ2
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Definition 5.6 (standard normal random variable). A normal random variable is
called a standard normal random variable when µ = 0 and σ = 1. This is denoted
by SZ. That is, Z ∼ N(0, 1). Its PDF and CDF are usually denoted by ϕ and Φ
respectively. That is,

ϕ(x) = 1√
2π

e− x2
2 and Φ(x) = 1√

2π

∫ x

−∞
e− t2

2 dt.

Proposition 5.4. Some properties of the standard normal distribution are as
follows:

(i) P (Z ≥ 0) = P (Z ≤ 0) = 0.5 due to symmetry
(ii) −Z ∼ N(0, 1)

(iii) P (Z ≤ x) = 1 − P (Z > x) for x ∈ R
(iv) P (Z ≤ −x) = P (Z ≥ x) for x ∈ R
(v) If X ∼ N(µ, σ2), then,

Z = X − µ

σ
∼ N(0, 1)

(vi) If Z ∼ N(0, 1), then X = aZ + b ∼ N(b, a2) for a, b ∈ R

Example 5.5 (ST2131 AY21/22 Sem 1). Let Z be a standard normal random variable.
For any real number a ∈ R, define Xa by

Xa :=
{

Z if Z > a;
0 otherwise.

Find E(X0) and E(X1).

Solution. Note that X0 = Z for Z > 0 and 0 otherwise. By definition of the probability
density function of the standard normal random variable,

E(X0) =
∫ ∞

0
x · 1√

2π
e−x2/2 dx ≈ 0.40.

As for X1, it is equal to Z for Z > 1 and 0 otherwise. In a similar fashion,

E(X1) =
∫ ∞

1
x · 1√

2π
e−x2/2 dx ≈ 0.24.

□

Example 5.6 (ST2132 AY18/19 Sem 2 Tutorial 2). Let X1, . . . , Xn be independent
variables, with E(Xi) = µi and Var(Xi) = σ2

i . For each i, let ai and bi be constants
such that Yi = aiXi + bi is standardised.
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(a) Express ai and bi in terms of µi and σi.
(b) Are Yi independent?
(c) Are Yi identically distributed?
(d) Repeat (c), if each Xi has a Bernoulli distribution.
(e) Repeat (c), if each Xi has a normal distribution.

Solution.
(1). Since E(Yi) = 0 and Var(Yi) = 1, then aiµi + b = 0 and a2

i σ2
i = 1, so ai = 1/σi and

bi = −µi/σi. Here, we assume that ai > 0.
(2). Yes, since the Xi’s are independent.
(3). Unable to tell from the given information.
(4). Xi ∼ Bernoulli(p), so E(Xi) = pi and Var(Xi) = pi(1 − pi). Hence, ai = 1/piqi and

bi = −1/qi, where qi = 1 − pi. We prove that the statement is not true in general.
Suppose X1 ∼ Bernoulli(0.5) and X2 ∼ Bernoulli(0.1), so Y1 = 4X1 − 2 and Y2 =
90X2 − 9.

(5). Since Yi is the standard normal random variable, then each of the Yi’s is identically
distributed.

Example 5.7 (Ross p. 244 Question 11). Let Z be the standard normal random variable.
Show that

E
(
Zn+2

)
= (n + 1) E (Zn) .

Solution. Use integration by parts. □

Proposition 5.5 (68-95-99.7 rule). The 68–95–99.7 rule, also known as the empir-
ical rule, is a shorthand used to remember the percentage of values that lie within
an interval estimate in a normal distribution: 68%, 95% and 99.7% of the values
lie within one, two, and three standard deviations of the mean, respectively. That
is, for a random variable X

P (µ − σ ≤ X ≤ µ + σ) ≈ 0.6827
P (µ − 2σ ≤ X ≤ µ + 2σ) ≈ 0.9545
P (µ − 3σ ≤ X ≤ µ + 3σ) ≈ 0.9973

In the empirical sciences, the so-called three-sigma rule of thumb (or 3σ rule) expresses
a conventional heuristic that nearly all values are taken to lie within three standard
deviations of the mean, and thus it is empirically useful to treat 99.7% probability as
near certainty.
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Theorem 5.3 (de Moivre-Laplace theorem). Suppose X ∼ B(n, p). Then, for any
a < b, we have

P

(
a <

X − np
√

npq
< b

)
→ Φ(b) − Φ(a)

as n → ∞. That is, B(n, p) ≈ N(np, npq). Equivalently,

X − np
√

npq
≈ Z where Z ∼ N (0, 1) .

The normal approximation will generally be good for values of n satisfying npq ≥ 10.
The approximation is further improved if we incorporate continuity correction.

Proposition 5.6 (continuity correction). If X ∼ B(n, p), then

P (X = k) = P

(
k − 1

2 < X < k + 1
2

)
P (X ≥ k) = P

(
X ≥ k − 1

2

)
P (X ≤ k) = P

(
X ≤ k + 1

2

)

5.4 Exponential Distribution

Definition 5.7 (exponential distribution). A random variable X is said to follow an
exponential distribution with parameter λ > 0 if its PDF is

f (x) =

λe−λx if x ≥ 0;
0 if x < 0.

We say that X ∼ Exp(λ). For x ∈ Z≥0, the CDF is F (x) = 1 − e−λx.

Proposition 5.7. If X ∼ Exp(λ), then the expectation and variance are

E(X) = 1
λ

and Var(X) = 1
λ2 .

Proposition 5.8 (median and exponential decay). If T ∼ Exp(λ), then the median
m is ln 2/λ.
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Proof. This is easy to prove by considering the CDF formula. Substituting t = m, we
have

F (m) = 1
2

e−λm = 1
2

m = ln 2
λ

The expression ln 2/λ is of great significance. It is known as half-life and it plays an
important role in the exponential decay of an object.

A quantity is subject to exponential decay if it decreases at a rate proportional to its
current value. Symbolically, this process can be expressed by the following differential
equation:

dN

dt
= −λN,

where N is the quantity and λ is a positive rate called the exponential decay constant.
The solution to the equation is N = N0e−λt, where N0 = N(0) is the initial quantity at
time t = 0.

Recall that the if a random variable X satisfies the memoryless property, then for
m, n ∈ N,

P (X > m + n | X > m) = P (X > n).

Previously, we claimed and proved that the geometric distribution is the only discrete
random variable exhibiting the memoryless property. Here, we set m, n ∈ R+ since we
are dealing with continuous random variables.

Proposition 5.9 (memorylessness). For the continuous counterpart, only the
exponential distribution has the memoryless property.

We provide a proof for this statement.

Proof. We apply the definition of conditional probability to the left side. Hence,

P (X > m + n) = P (X > m)P (X > n).

We note that P (X ≤ x) = F (x) by definition of the CDF. Hence, the equation becomes

[1 − F (m + n)] = [1 − F (m)][1 − F (n)].
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Using the substitution G(x) = 1 − F (x) for all x ∈ R+, we have

G(m + n) = G(m)G(n),

which is a functional equation involving two variables. Setting m = n = 0 yields G(0) =
[G(0)]2, and so G(0)[1 − G(0)] = 0. Hence, G(0) = 0 or G(0) = 1.

By first principles,

G′(x) = lim
δx→0

G(x + δx) − G(x)
δx

= lim
δx→0

G(x)G(δx) − G(x)
δx

= G(x) lim
δx→0

G(δx) − G(0)
δx

= G(x)G′(0)

Note that G′(0) is a constant, say c, so we end up with a first-order separable differential
equation, namely G′(x) = cG(x). This is easy to solve. We get G(x) = ecx+d, where c

and d are both constants. By setting A = ed, the solution is just

G(x) = Aecx.

Hence, F (x) = 1 − Aecx and since f(x) is the derivative of the CDF, then

f(x) = F ′(x) = −Acecx.

By setting c = −λ and −Ac = λ, we have A = 1, and the result follows.

Example 5.8 (ST2131 AY24/25 Sem 1 Lecture 12). Used cars are sold at a garage. The
total lifetime mileage that a car from the garage can be drive before it breaks down
is assumed to have an exponential distribution. You and I both bought a car from the
garage.

Your car has been driven 100 thousand kilometres. My car has been driven 150 thousand
kilometres. Which of the two cars is more likely to be driven for a longer distance before
breaking down?

Solution. Let Y be the lifetime of your car and M be the lifetime of my car. Then

P (Y > t + 100 | Y > 100) and P (M > t + 150 | M > 150)
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are probabilities of interest. Both probabilities are actually equal by the memoryless
property of the exponential random variable. That is,

P (Y > t + 100 | Y > 100) = P (Y > t) = P (M > t) = P (M > t + 150 | M > 150) .

So, both cars are equally likely to break down. Well, to further justify, let X be the
lifetime of the car, which can be modelled as X ∼ exp (λ). Define a random process

S (t) =

1 if X ≤ t;
0 otherwise

which is a memoryless process.

Consider P (S (s) = 0 | S (t) = 0). This is equal to P (S (s − t) = 0), i.e. when you arrive
at point t, the process forgets the history and refreshes itself. This is known as the
Markov property. □

Definition 5.8 (Poisson process). A homogeneous Poisson point process can be
defined as a counting process, which can be denoted by {N(t), t ≥ 0}. A counting
process represents the total number of occurrences or events that have happened
up to and including time t. A counting process is a homogeneous Poisson counting
process with rate λ > 0 if it has the properties N(0) = 0, has independent
increments and the number of events in any interval of length t is a Poisson random
variable with parameter (or mean) λt.

We shall prove that if N(t) ∼ Po(λt), then the inter-arrival time T , follows an
exponential distribution with parameter λ. That is, T ∼ Exp(λ).

Proof. Note that

P (T > t) = P (N(t) = 0) = e−λt

Hence, P (T ≤ t) = 1 − e−λt, which implies that f(t) = λe−λt. Therefore, T ∼ Exp(λ).

In most cases, we usually denote an exponential random variable by T since it
encompasses the essence of time.
Example 5.9 (ST2131 AY24/25 Sem 1 Lecture 12). When an MRT line breaks down, the
time in hours until the resumption of operations is an exponentially distributed random
variable with parameter 1/4.

(a) What is the probability that more than four hours is needed to fix a broken down
MRT line?
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(b) One of the MRT lines has broken down five hours ago. What is the probability
that it will get fixed within the next four hours?

Solution.
(a) Let X denote the number of hours required to fix the MRT line. Find P (X > 4),

which is given by ∫ ∞

4

1
4e−x/4 dx = 1/e.

(b) This is finding P (X ≤ 4 + 5 | X ≥ 5). Recall the memoryless property of the
exponential variable, so

1 − P (X > 4 + 5 | X > 5) = 1 − P (X > 4) = 1 − 1
e

.

Theorem 5.4 (distribution of the minimum). Suppose Ti ∼ Exp(λi) for 1 ≤ i ≤ n

and the Ti’s are independent exponential random variables. We define W to be the
minimum of all the Ti’s and claim that W also follows an exponential distribution.
That is,

W = min {T1, T2, . . . , Tn} ∼ Exp
(

n∑
i=1

λi

)
.

Proof.

P (W ≤ t) = 1 − P (W > t)
= 1 − P (T1 > t)P (T2 > t) . . . P (Tn > t) since the Ti’s are independent
= 1 − e−λ1te−λ2t . . . e−λnt

= 1 − e−(λ1+λ2+...+λn)

= 1 − exp
(

−
n∑

i=1
λit

)

Differentiating both sides yields

fW (t) =
(

n∑
i=1

λi

)
exp

(
−

n∑
i=1

λit

)
,

asserting that our claim is true.

Corollary 5.1. If Ti ∼ Exp(λ) for 1 ≤ i ≤ n, and that all the Ti’s are identically
distributed, then

W = min {T1, T2, . . . , Tn} ∼ Exp(nλi).
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We then introduce the inverse transform sampling method. The probability integral
transform states that if X is a continuous random variable with cumulative distribution
function FX , then the random variable Y = F (X) has a uniform distribution on (0, 1).
The inverse probability integral transform is just the inverse of this. To be specific, we
have the following result:

Theorem 5.5 (inverse transform sampling). If Y ∼ U(0, 1) and if X has a cumula-
tive distribution FX , then the random variable F −1

X (Y ) has the same distribution
as X.

Proof. First, note that the CDF is an increasing function so from the first step to the
second step, the inequality sign will not change.

P
[
F −1(Y ) ≤ x

]
= P [Y ≤ F (x)] by applying F to both sides

= F (x) since Y is uniform on (0, 1)

Example 5.10 (ST2131 AY19/20 Sem 2). Let X be an exponential random variable with
mean 1. Find the probability density function of Y = 1/X2.

Solution. We have P (X ≤ x) = e−x for x ≥ 0 by definition of the exponential distribu-
tion. Thus,

P (Y ≤ y) = P

( 1
X2 ≤ y

)
= P

(1
y

≤ X2
)

= P

(
X ≤ − 1

√
y

or X ≥ 1
√

y

)

= P

(
X ≤ − 1

√
y

)
+ P

(
X ≥ 1

√
y

)

= 0 +
∫ ∞

1/
√

y
e−x dx

= exp
(

− 1
√

y

)

Differentiating P (Y ≤ y) with respect to y yields fY (y), which is the probability density
function of Y , so

f(y) =
exp

(
−1/

√
y
)

2y3/2 .
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Next, we find the support of Y . Since X is defined for x ≥ 0, then Y is defined for y ≥ 0.
To conclude,

f (y) =


exp

(
−1/

√
y
)

2y3/2 if y ≥ 0;

0 otherwise.

□

Previously in Theorem 5.4, we talked about the distribution of the minimum of
independent random variables. In general, we have the following result:

Theorem 5.6 (distribution of the maximum and minimum). Assume that
X1, X2, . . . , Xn are independent random variables with common CDF F and PDF
f . Let

U = max {X1, . . . , Xn} and V = min {X1, . . . , Xn} .

The CDF of U is

FU (u) = P (U ≤ u) =
n∏

i=1
P (Xi ≤ u) = [F (u)]n,

and the PDF of U is
fU (u) = nf(u)[F (u)]n−1.

Similarly, the CDF of V is

FV (v) = 1 − [1 − F (v)]n,

and the PDF of V is
fV (v) = nf(v)[1 − F (v)]n−1.

The results in Theorem 5.6 are easy to established. In particular, the respective PDFs
can be easily derived by differentiating the CDF and we make use of F ′ = f . Also, since
V is the minimum, V ≥ v if and only if for all 1 ≤ i ≤ n, Xi ≥ v.

To summarise,

Random Variable PDF Parameter(s) E(X) Var(X)

Exp(λ) λe−λx λ 1
λ

1
λ2
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Definition 5.9 (Laplace distribution). The definition of the Laplace distribution is

f (x) = 1
2λe−λ|x|.

Realise that the Laplace distribution is a natural extension of the exponential
distribution.

Example 5.11 (ST2131 AY24/25 Sem 1 Lecture 12). The random variable X follows the
Laplace distribution with parameter 1/π. Find P (X > π) , P (−1 < X < 2) , E (X) , Var (X).

Solution. So
P (X > π) =

∫ ∞

π

1
2 · 1

π
e−x/π dx = 1

2e
.

For P (−1 < X < 2), we find

P (−1 < X < 2) =
∫ 0

−1

1
2 · 1

π
e−x/π dx +

∫ 2

0

1
2 · 1

π
e−x/π dx.

Observe that this is a symmetric function, so we can compute

P (−1 < X < 2) =
∫ 1

0

1
2 · 1

π
e−x/π dx +

∫ 2

0

1
2 · 1

π
e−x/π dx ≈ 0.37.

For E (X), note that this is a symmetric distribution. So, E (X) = 0. Lastly, the variance
is

Var (X) = E
(
X2
)

− [E (X)]2 = 1
2π

∫ 0

−∞
x2e−x/π dx + 1

2π

∫ ∞

0
x2e−x/π dx = 2π2.

Here, the evaluation of each integral is quite simple — use integration by parts. □

5.5 Gamma Distribution

Definition 5.10 (gamma distribution). A random variable X is said to follow a
gamma distribution with parameters α and λ, and is denoted by X ∼ Γ(α, λ).
The PDF only exists for x ≥ 0 and its formula is

f(x) = λe−λx(λx)α−1

Γ(α) ,

where α, λ > 0 and Γ(α), called the gamma function, is defined by

Γ(α) =
∫ ∞

0
e−ttα−1 dt.
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It is easy to prove that Γ(1) = 1 and that the gamma function satisfies the following
recurrence relation:

Γ(α + 1) = αΓ(α)

Proof. Use integration by parts.

Hence, it is easy to establish that for integer values of α, say α = n, we have
Γ(n) = (n − 1)!.

Observe that Γ(1, λ) = Exp(λ), which implies that the exponential distribution is a
special case of the gamma distribution.

Lemma 5.1. A very interesting result states that

Γ
(1

2

)
=
∫ ∞

0
e−tt− 1

2 dt =
√

π.

Proof. Using the substitution u =
√

t, we have∫ ∞

0
e−tt− 1

2 dt =
∫ ∞

−∞
e−u2

du

This follows from the Gaussian integral (Theorem 5.2).

Proposition 5.10. If X ∼ Γ(α, λ), then the expectation and variance are

E(X) = α

λ
and Var(X) = α

λ2 .

To summarise,

Random Variable PDF Parameter(s) E(X) Var(X)

Γ(α, λ) λe−λx(λx)α−1

Γ(α) α and λ α
λ

α
λ2

Similar to the Poisson process, we have a similar result, known as a gamma process.

Theorem 5.7 (gamma process). If events are occurring randomly and in accordance
with the axioms required for a situation to be modelled by a Poisson process, then
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the amount of time one has to wait until a total of n events has occurred will be
a gamma random variable with parameters (n, λ).

Proof. Let Tn denote the time at which the nth event occurs, and N(t) equal to the
number of events in [0, t]. Note that N(t) ∼ Po(λt). Hence, {Tn ≤ t} = {N(t) ≥ n}.
Therefore,

P (Tn ≤ t) = P (N(t) ≥ n) =
∞∑

j=n

P (N(t) = j) =
∞∑

j=n

e−λt(λt)j

j! .

To get the PDF of Tn, we differentiate both sides with respect to t. This should be
straightforward and will be left as an exercise.

5.6 Beta Distribution

Definition 5.11 (beta distribution). A random variable X is said to follow a beta
distribution with parameters (a, b), denoted by X ∼ Beta(a, b), if its PDF is

f(x) = 1
B(a, b)xa−1(1 − x)b−1,

where the support of x is 0 < x < 1. The expression B(a, b) is known as the beta
function, where

B(a, b) =
∫ 1

0
xa−1(1 − x)b−1 dx.

Lemma 5.2 (relationship with gamma function).

B(a, b) = Γ(a)Γ(b)
Γ(a + b)

Proof. We first consider Γ(a)Γ(b) and write it as an integral. Then,

Γ(a)Γ(b) =
(∫ ∞

0
e−uua−1 du

)(∫ ∞

0
e−vvb−1 dv

)
=
∫ ∞

0

∫ ∞

0
e−(u+v)ua−1vb−1 dudv.

We use the change of variables u = zt and v = z(1 − t). Hence, v = −z(t − 1). Recall
that u, v ≥ 0, which implies that 0 ≤ t ≤ 1 and z ≥ 0. Upon change of variables, we have

Γ(a)Γ(b) =
∫ ∞

0

∫ 1

0
e−z(zt)a−1(z(1 − t))b−1z dtdz

=
(∫ ∞

0
e−zza+b−1 dz

)(∫ 1

0
ta−1(1 − t)b−1 dt

)
= Γ(a + b)B(a, b)
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which asserts that the statement is true.

Proposition 5.11. If X ∼ Beta(a, b), then

E(X) = a

a + b
and Var(X) = ab

(a + b)2(a + b + 1) .

We shall prove the formula for expectation only.

Proof. It is clear that

E (X) = 1
B(a, b)

∫ 1

0
xa(1 − x)b−1 dx.

By definition of the beta function and using the relationship between the beta function
and the gamma function, we can rewrite the above integral as

B (a + 1, b)
B(a, b) = Γ (a + 1) Γ (b)

Γ (a + b + 1) · Γ (a + b)
Γ (a) Γ (b) = Γ (a + 1) Γ (a + b)

Γ (a) Γ (a + b + 1) .

To summarise,

Random Variable PDF Parameter(s) E(X) Var(X)

Beta(a, b) 1
B(a,b)xa−1(1 − x)b−1 a and b a

a+b
ab

(a+b)2(a+b+1)

5.7 Cauchy Distribution

Definition 5.12 (Cauchy distribution). A random variable X is said to follow a
Cauchy distribution with parameter θ, where θ ∈ R, denoted by X ∼ Cauchy(θ),
if its PDF is

f(x) = 1
π

· 1
1 + (x − θ)2 .

It is also the distribution of the ratio of two independent normally distributed random
variables with mean zero. Interestingly, the expectation and variance of a Cauchy random
variable do not exist!
Example 5.12 (Ross p. 247 Question 16). A standard Cauchy random variable X has
probability density function

f(x) = 1
π(1 + x2) , −∞ < x < ∞.
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Prove that 1/X is also a standard Cauchy random variable.

Solution. Let Y = 1/X. Then,

P (Y ≤ y) = P

( 1
X

≤ y

)
= P

(1
y

≤ X

)
=
∫ ∞

1/y

1
π (1 + x2) dx = 1

2 − 1
π

arctan
(1

y

)
.

Differentiating both sides yields the desired result. □

To summarise,

Random Variable PDF Parameter(s) E(X) Var(X)

U(a, b) 1
b−a a and b a+b

2
(b−a)2

12

N(µ, σ2) 1
σ

√
2π

e− (x−µ)2

2σ2 µ and σ µ σ2

Exp(λ) λe−λx λ 1
λ

1
λ2

Γ(α, λ) λe−λx(λx)α−1

Γ(α) α and λ α
λ

α
λ2

Beta(a, b) 1
B(a,b)xa−1(1 − x)b−1 a and b a

a+b
ab

(a+b)2(a+b+1)

Cauchy(θ) 1
π · 1

1+(x−θ)2 θ

5.8 Order Statistics

Suppose we have a sample of n random variables, X1, X2, . . . , Xn, drawn from some
distribution. To study the ordered values, we sort the sample in increasing order as
follows:

X(1) < X(2) < . . . < X(n)

Here, X(1), X(2), . . . , X(n) are called the order statistics.
• X(1) is the smallest value in the sample, also known as the minimum
• X(n) is the largest value in the sample, also known as the maximum
• X(i) is the ith smallest value in the sample (also called the ith order statistic)

The notation X(i) < X(j) for 1 ≤ i < j ≤ n indicates that the order statistics are
arranged in strictly increasing order. The index (i) specifies the position in the ordered
sequence, not the original order of Xi.



MA2116 ST2131 PROBABILITY Page 119 of 156

Theorem 5.8. The CDF of X(r) (where r specifies the order statistic) is

FX(r)(x) =
n∑

j=r

(
n

j

)
[FX(x)]j [1 − FX(x)]n−j

and the corresponding PDF is

fX(r)(x) = n!
(r − 1)!(n − r)!fX(x)[FX(x)]r−1[1 − FX(x)]n−r.

Example 5.13. Suppose X1, X2, . . . , Xn are independent and identically distributed
random variables, each following a uniform distribution on [0, 1]. We are interested in
the second smallest value, X(2), in a sample of size n = 3. Obtain its CDF.

Solution. In fact, the second smallest value is the median. We have FX(2) (x) =
P
(
X(2) ≤ x

)
. This means that at least two of the random variables X(1), X(2), X(3)

have values ≤ x. We shall consider two cases.
• Case 1: Suppose two random variables have values ≤ x. Then, the contribution

of this event is (
3
2

)
[FX (x)]2 [1 − FX (x)] .

• Case 2: Suppose all three random variables have values ≤ x. The contribution of
this event is (

3
3

)
[FX (x)]3 .

The desired CDF is the sum of contributions of the two cases, so,

FX(2) (x) =
(

3
2

)
[FX (x)]2 [1 − FX (x)] +

(
3
3

)
[FX (x)]3 .

□
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Chapter 6

Joint Probability Distribution

6.1 Joint Distribution Functions

Definition 6.1 (joint distribution). For any two random variables X and Y defined
on the same sample space, we define the joint distribution function of X and Y by

FX,Y (x, y) = P (X ≤ x, Y ≤ y) for x, y ∈ R.

Note that {X ≤ x, Y ≤ y} is equivalently {X ≤ x} ∩ {Y ≤ y}.

Definition 6.2 (marginal distribution). The distribution function of X can be
obtained from the joint density function of X and Y via

FX(x) = lim
y→∞

FX,Y (x, y) where FX is the marginal distribution of X.

Similarly,

FY (y) = lim
x→∞

FX,Y (x, y) where FY is the marginal distribution of Y.

Proposition 6.1. We present two formulae which are useful in some calculations.
Let a, b be real numbers, where a1 < a2 and b1 < b2. Then, the following hold:

(i)
P (X > a, Y > b) = 1 − FX(a) − FY (b) + FX,Y (a, b)

(ii)

P (a1 < X ≤ a2, b1 < Y ≤ b2) = FX,Y (a2, b2) − FX,Y (a1, b2) + FX,Y (a1, b1) − FX,Y (a2, b1)

We will only prove (i).

Proof. We set A = {X ≤ a} and B = {Y ≤ b}. Then, the required event is A′ ∩ B′, which
is the same as (A ∩ B)′, and by considering the complement of it, it is equivalently
n(S) − (A ∩ B). By the principle of inclusion and exclusion, the required probability is
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1 − P (A ∪ B). Hence,

P (X > a, Y > b) = 1 − P (A ∪ B)
= 1 − P (A) − P (B) + P (A ∩ B)
= 1 − FX(a) − FY (b) + FX,Y (a, b)

which concludes the proof.

Definition 6.3 (joint density function). In the case where X and Y are discrete
random variables, the joint probability density function of X and Y is

pX,Y (x, y) = P (X = x, Y = y).

We can recover the probability density function of X and Y using

pX(x) = P (X = x) =
∑
y∈R

pX,Y (x, y) and pY (y) = P (Y = y) =
∑
x∈R

pX,Y (x, y).

px and py are the marginal probability density function of X and Y respectively.
Example 6.1. 3 balls are randomly selected from an urn containing 3 red, 4 white
and 5 blue balls. If we let R and W denote the number of red and white balls chosen
respectively, then we can construct a joint probability density function table of R and
W . It is shown below.

Solution.

white (right); red (bottom) 0 1 2 3 P (R = r)

0 10
220

40
220

30
220

4
220

84
220

1 30
220

60
220

18
220 0 108

220

2 15
220

12
220 0 0 27

220

3 1
220 0 0 0 1

220

P (W = w) 56
220

112
220

48
220

4
220

It should be clear as to how these probabilities are computed. □

Example 6.2 (ST2132 AY18/19 Sem 2 Tutorial 2). Let X1 be uniformly distributed on
{0, 1, 2}. Given that X1 = 0, let X2 be 0, 1 or 2 with probabilities 1/2, 1/4 and 1/4
respectively. Given that X1 = 1, let X2 be 0, 1 or 2 with probabilities 1/2, 1/4 and 1/4
respectively. Given that X1 = 2, let X2 be 0, 1 or 2 with probabilities 0, 1/2 and 1/2.
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(a) Find the joint distribution of (X1, X2), displaying the probabilities in a table, with
the realisations of X1 as rows.

(b) Display the joint distribution of (X2, X1) in another table with realisations of X2

as rows.
(c) What is the relationship between the two tables?
(d) True or false, and explain: (X1, X2) and (X2, X1) have the same joint distribution.

Solution. Nothing special about this question. For (c), the tables are transposes of each
other. For (d), as the tables are not identical, the answer is false. □

Proposition 6.2. Some useful formulae are as follows:
(i)

P (a1 < X ≤ a2, b1 < Y ≤ b2) =
∑

a1<x≤a2

∑
b1<y≤b2

pX,Y (x, y)

(ii)
FX,Y (a, b) = P (X ≤ a, Y ≤ b) =

∑
x≤a

∑
y≤b

pX,Y (x, y)

(iii)
P (X > a, Y > b) =

∑
x>a

∑
y>b

pX,Y (x, y)

Definition 6.4 (jointly density function). We say that X and Y are jointly
continuous random variables if there exists a function, denoted by fX,Y and known
as the joint probability density function of X and Y if for every set C ⊆ R2, we
have

P ((X, Y ) ∈ C) =
∫ ∫

(x,y∈C)
fX,Y (x, y) dxdy.

Proposition 6.3. We state some useful formulae.
(i) Let A, B ⊆ R. Set C = A × B (i.e. C is the Cartesian product of A and B).

Then,
P (X ∈ A, Y ∈ B) =

∫
A

∫
B

fX,Y (x, y) dydx.

(ii) In particular, we can set a1, a2, b1, b2 ∈ R, where a1 < a2 and b1 < b2, and so

P (a1 < X ≤ a2, b1 < Y ≤ b2) =
∫ a2

a1

∫ b2

b1
fX,Y (x, y) dydx.



MA2116 ST2131 PROBABILITY Page 123 of 156

(iii) Let a, b ∈ R. Then,

FX,Y (a, b) = P (X ≤ a, Y ≤ b) =
∫ a

∞

∫ b

∞
fX,Y (x, y) dydx.

Hence,

fX,Y (x, y) = ∂2

∂x∂y
FX,Y (x, y).

Definition 6.5 (marginal density function). The marginal probability density
function of X is

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy.

Similarly, the marginal probability density function of Y is

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx.

Example 6.3. The joint probability density function of X and Y is

fX,Y (x, y) =

2e−xe−2y if x, y > 0;
0 otherwise.

Suppose we wish to compute the following probabilities:
(i) P (X > 1, Y < 1)

(ii) P (X < Y )
(iii) the marginal probability density function of X

(iv) P (X ≤ x)
(v) the marginal distribution function of Y

Solution.
(i) This probability can be expressed by the following integral:∫ ∞

1

∫ 1

0
2e−xe−2y dydx

and this is a very simple problem in Multivariable Calculus. The answer is e−1(1 −
e−2).

(ii) As 0 < x < y and 0 < y < ∞, the required probability is∫ ∞

0

∫ y

0
2e−xe−2y dxdy.

The answer is 1/3. I omit the integration process because it is simple. I believe
the only issue readers might have is setting up the double integral. We have an



MA2116 ST2131 PROBABILITY Page 124 of 156

alternative representation for it. That is, we set x < y < ∞ and 0 < x < ∞. Hence,
the integral is just ∫ ∞

0

∫ ∞

x
2e−xe−2y dydx = 1

3 .

It yields the same conclusion as before!
(iii) Recall that the formula for the marginal probability density function of X is

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy.

Substituting everything in yields

fX(x) =
∫ ∞

−∞
2e−xe−2y dy = e−x.

Hence, for x > 0, the marginal probability density function is fX(x) = e−x.
(iv) Note that P (X ≤ x) is the marginal distribution function of x, so

FX(x) =
∫ x

∞
e−t dt = 1 − e−x wherex > 0.

(v) The marginal distribution function of Y , for y > 0, is FY (y) = 1 − e−2y.

6.2 Independent Random Variables

Definition 6.6 (independent random variables). Two random variables X and Y are
independent if

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

for any A, B ⊆ R. Random variables that are not independent are dependent.

Proposition 6.4. For jointly discrete random variables, we have three equivalent
statements:

(i) X and Y are independent
(ii) For all x, y ∈ R, pX,Y (x, y) = pX(x)pY (y)

(iii) For all x, y ∈ R, FX,Y (x, y) = FX(x)FY (y)
For jointly continuous random variables, we also have three equivalent statements.

(i) X and Y are independent
(ii) For all x, y ∈ R, fX,Y (x, y) = fX(x)fY (y)

(iii) For all x, y ∈ R, FX,Y (x, y) = FX(x)FY (y)

For both discrete and continuous random variables, X and Y are independent if and
only if

there exist functions g, h : R → R such that for all x, y ∈ R, fX,Y (x, y) = g (x) h (y) .



MA2116 ST2131 PROBABILITY Page 125 of 156

In many applications, we either know or assume that X and Y are independent. Then,
the joint probability density function of X and Y can be obtained by multiplying the
individual probability density functions.

Independence is a symmetric relation. To say that X is independent of Y is equivalent
to saying that Y is independent of X, or simply saying that X and Y are independent.
In considering whether X is independent of Y in situations where it is not at all intuitive
that knowing the value of Y will not change the probabilities concerning X, it can be
beneficial to interchange the roles of X and Y and ask instead whether Y is independent
of X.
Example 6.4 (Buffon’s needle problem). A table is ruled with equidistant parallel lines
with distance D apart from one another. A needle of length L, where L ≤ D, is randomly
thrown onto the table. The Buffon’s needle problem asks for the probability that the
needle will intersect one of the lines.

Solution. The answer is a surprising
2L

πD
.

This shows that when L ≈ D, we can find a good estimate of the value of π. However,
the approximation is not powerful until we toss the needle over 3400 times, which allows
us to get the value of π to 6 decimal places.

We determine the position of the needle by specifying the distance X from the midpoint
of the needle to the nearest parallel line, and the angle θ between the needle and the
projected line of length X. The needle will intersect a line if the hypotenuse of the right
triangle is less than L/2. That is,

X

cos θ
<

L

2 which implies X <
L

2 cos θ.

As X varies between 0 and D/2 and θ between 0 and π/2, it is reasonable to assume that
they are independent and uniformly distributed random variables over these respective
ranges. Note that D = L cos θ, and for 0 ≤ x ≤ D/2, fX(x) = 2/x and for 0 ≤ θ ≤ π/2,
fθ(θ) = 2/π. We thus obtain the joint probability density function

fX(x)fθ(θ) = 4
πD

for 0 ≤ x ≤ D/2, 0 ≤ θ ≤ π/2 and 0 elsewhere.

Hence,

P

(
X <

L

2 cos θ

)
=
∫ π

2

0

∫ L
2 cos θ

0

4
πD

dxdθ = 2L

πD
.
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□

Example 6.5 (ST2131 AY24/25 Sem 1 Lecture 14; Buffon’s needle problem). A table is
ruled with equidistant parallel lines a distance

√
3 cm apart. A needle of length 2 cm

is randomly thrown on the table. What is the probability that the needle will intersect
with (at least) one of the lines?

Solution. Let X denote the minimum distance between the center of the needle and the
ruled lines. Then, X ∼ U

(
0,

√
3/2

)
. Let θ denote the acute angle between the needle

and the lines. Then, θ ∼ U (0, π/2).

For the needle to intersect with one of the lines, we must have sin θ > X. We then
now find the area of {

(X, θ) ∈
[
0,

√
3/2

]
× [0, π/2] : sin θ > X

}
.

Note that X is bounded by
√

3/2, so we would have to be careful in carrying out the
integration. The probability that the needle intersects with the ruled lines is given by
the ratio of the feasible area over the total area.

The area of the feasible region is

π

2 ×
√

3
2 −

∫ √
3/2

0
sin−1(x) dx = 0.4069

and take this divided by the area of the rectangle to give 70%. □

Very often, we are interested in the sums of independent random variables. For
example, when two dice are rolled, we are interested in the sum of the two numbers.

Proposition 6.5. Suppose we have two independent random variables X and Y .
Then, for x, y ∈ R,

fX,Y (x, y) = fX(x)fY (y).

It follows that
FX+Y (x) =

∫ ∞

−∞
FX(x − t)fy(t) dt.

Proof. We have

FX+Y (x) = P (X + Y ≤ x) =
∫∫

s+t≤x
fX,Y (s, t) dsdt
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which simplifies to∫ ∞

−∞

∫ x−t

−∞
fX(s)fY (t) dsdt =

∫ ∞

−∞
FX(x − t)fy(t) dt.

Similarly,
FX+Y (x) =

∫ ∞

−∞
FY (x − t)fx(t) dt.

By differentiation, it can be shown that

fX+Y (x) =
∫ ∞

−∞
fX(x − t)fY (t) dt =

∫ ∞

−∞
fX(t)fY (x − t) dt.

Example 6.6. Recall that the sum of two independent uniform distributions follows a
triangular distribution. Let us prove this result! Suppose X and Y are independent
random variables with a common uniform distribution over (0, 1). That is, X ∼ U(0, 1)
and Y ∼ U(0, 1). We wish to find the probability density function of X + Y .

Solution. X + Y takes values in (0, 2). For x ≤ 0 and x ≥ 2, it follows that fX+Y (x) = 0.
For 0 < x < 2,

fX+Y (x) =
∫ ∞

−∞
fX(x − t)fY (t) dt =

∫ 1

0
fX(x − t) dt

fX(x − t) > 0 if and only if 0 < x − t < 1. Note that x is fixed and t varies. We split this
into two cases, namely 0 < x ≤ 1 and 1 < x < 2.

For 0 < x ≤ 1,

fX+Y (x) =
∫ 1

0
fX(x − t) dt +

∫ 1

x
fX(x − t) dt

=
∫ x

0
fX(x − t) dt

=
∫ x

0
dt

= x

In a similar fashion, it can be shown that for 1 < x < 2,

fX+Y (x) = 2 − x.

Hence,

fX+Y =


x if 0 < x ≤ 1;
2 − x if 1 < x < 2;
0 otherwise.
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The density function has the shape of a triangle, so X + Y follows a triangular
distribution. □

Example 6.7 (ST2131 AY24/25 Sem 1 Lecture 14). A man and a woman agreed to
meet at the location at 12 pm. The man arrives at the location at the time uniformly
distributed between 11:45 am and 12:15 pm. The woman arrives at the location at a
time uniform distributed between 12 pm and 12:30 pm.

(a) What is the probability that the first person to arrive waits less than 5 minutes
for the second person?

(b) What is the probability that the man arrives first?

Solution.
(a) Let X and Y be the number of minutes the man and woman arrive with respect

to 12 pm.

We have

X ∼ U (−15, 15) and Y ∼ Y (0, 30) .

It suffices to find

P (|X − Y | < 5) or equivalently P (−5 < Y − X < 5) .

Let us construct a diagram as follows:

x − y = −5

x − y = 5

−30 −20 −10 10 20 30

10

20

30

Plot Y against X, and we use this to find the area bounded between y = 5 + x

and y = x − 5 in the rectangle [−15, 15] × [0, 30], and divide it by the area of the
rectangle. Computation yields us 17%.



MA2116 ST2131 PROBABILITY Page 129 of 156

(b) For this, we are finding P (X < Y ). The diagram is given as follows:

−30 −20 −10 10 20 30

10

20

30

With this,

P (Y > X) = shaded area
total area = 1 −

1
2 · 152

302 = 0.88.

Example 6.8 (ST2131 AY24/25 Sem 1 Lecture 14). One point is randomly selected on
the interval [0, 1/2]. Another point is randomly selected on the interval [1/2, 1]. What is
the probability that the distance between the two points is greater than 1/4?

Solution. Let X ∼ U (0, 1/2) and Y ∼ U (1/2, 1) be the two points selected. It suffices
to find P (Y > X + 1/4). Let us plot the desired region.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

We find that this shaded area is 7/8. □

Example 6.9 (ST2131 AY24/25 Sem 1 Lecture 14). Three points X, Y, Z are selected
independently at random from the interval [0, 1]. What is the probability that Y lies
between X and Z?
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Solution. There are 2 permutations where Y is between X and Z. The total number of
permutations is 3! = 6. So, the desired answer is 2/6 = 1/3. □

Example 6.10 (ST2131 AY21/22 Sem 2). Three numbers A, B, C are selected indepen-
dently at random from the unit interval [0, 1]. What is the probability that both roots
of the equation Ax2 + Bx + C = 0 are real?

Solution. For the roots to be real, B2 − 4AC ≥ 0. By the total law of probability,

P (B2 ≥ 4AC) =
∫ 1

0
P (B2 ≥ 4AC|C = c)f(c) dc.

Due to independence, the above can be written as∫ 1

0
P (B2 ≥ 4Ac) dc.

Since b2 ∈ [0, 1], we consider two cases, namely when c ∈ (0, 1/4) and c ∈ [1/4, 1).

For c ∈ (0, 1/4),

P (B2 ≥ 4Ac) =
∫ 1

0

∫ 1
√

4ac
dbda = 1 − 4

3
√

c.

For c ∈ [1/4, 1),

P (B2 ≥ 4Ac) =
∫ 1

0

∫ b2/4c

0
dadb = 1

12c
.

Putting everything together,

P (B2 ≥ 4AC) =
∫ 1/4

0
1 − 4

3
√

c dc +
∫ 1

1/4

1
12c

dc = 5 + 3 ln 4
36 .

□

Example 6.11 (ST2131 AY21/22 Sem 2). Let X and Y be independent random variables
uniformly distributed on the unit interval [0, 1]. Find

(a) P (−0.5 < 3X − 2Y < 0.5)
(b) P (0 < 3X − 2Y < 2.5)

Solution.
(a) The probability is P (−0.5 + 2Y < 3X < 0.5 + 2Y ), which is∫∫

−0.5+2y<3x<0.5+2y
f(x, y) dxdy =

∫∫
−0.5+2y<3x<0.5+2y

fX(x)fY (y) dxdy

=
∫ 1

0

∫ (2y+0.5)/3

(2y−0.5)/3

(1
1

)2
dxdy

= 1
3
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(b) In a similar fashion, the required probability is

∫∫
2y<3x<2.5

f(x, y) dxdy =
∫ 1

0

∫ 2.5/3

2y/3
dxdy = 1

2

6.3 Conditional Probability Distribution

Definition 6.7 (conditional discrete probability density function). The conditional
probability density function of X given that Y = y is defined by

PX|Y (x | y) = pX,Y (x, y)
pY (y) for all y such that pY (y) > 0.

Similarly, the conditional distribution function of X given that Y = y is defined
by

FX|Y (x | y) = P (X ≤ x | Y = y) for all y such that pY (y) > 0.

It follows that
FX|Y (x | y) =

∑
a≤x

pX|Y (a|y).

If X is independent of Y , then the conditional probability density function of X given
Y = y is the same as the marginal probability density function of X for every y such
that pY (y) > 0.

Definition 6.8 (conditional continuous probability density function). Suppose X and
Y are jointly continuous random variables. We define the conditional probability
density function of X given Y = y to be

fX|Y (x | y) = fX,Y (x, y)
fY (y) for all y such that fY (y) > 0.

For A ⊆ R and y such that fY (y) > 0,

P (X ∈ A | Y = y) =
∫

A
fX|Y (x | y) dx.

The conditional distribution of X given that Y = y is defined by

FX|Y (x | y) = P (X ≤ x | Y = y) =
∫ x

−∞
fX|Y (t | y) dt.
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If X is independent of Y , then the conditional probability density function of X

given Y = y is the same as the marginal probability density function of X for every y

such that fY (y) > 0.

6.4 Joint Probability Distribution Function of Functions of Several
Variables

Let X and Y be jointly distributed random variables with joint probability density
function fX,Y . It is sometimes necessary to obtain the joint distribution of the random
variables U and V , which arise as functions of X and Y . Suppose

U = g (X, Y ) and V = h (X, Y ) for some functions g and h.

We wish to find the joint probability function of U and V in terms of the joint probability
density function fX,Y , g and h.
Example 6.12. For example, say X and Y are independent exponentially distributed
random variables. We are interested in the joint probability density function of U =
X + Y and V = X/ (X + Y ). It is clear that

g(x, y) = x + y and h(x, y) = x

x + y
.

In general, to find the joint probability density function of U and V , we state some
conditions first.

Algorithm 6.1 (formulation of the joint probability density function). We assume
that the following conditions are satisfied:

(i) Let X and Y be jointly continuously distributed random variables with a
known joint probability density function.

(ii) Let U and V be given functions of X and Y of the form U = g(X, Y ) and
V = h(X, Y ) and we can uniquely solve X and Y in terms of U and V . That
is,

x = a (u, v) and y = b (u, v) .

(iii) The functions g and h have continuous partial derivatives and

J(x, y) = det
[

∂g
∂x

∂g
∂y

∂h
∂x

∂h
∂y

]
= ∂g

∂x

∂h

∂y
− ∂g

∂y

∂h

∂x
̸= 0.

We call the matrix the Jacobian matrix and J the determinant of the
Jacobian.
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Hence, the joint probability density function of U and V is

fU,V (u, v) = fX,Y (x, y)
J

,

where x = a(u, v) and y = b(u, v) as mentioned.

Example 6.13. Let X and Y be jointly distributed with the joint probability density
function

fX,Y (x, y) = 1
2π

exp
(

−x2 + y2

2

)
.

Note that X and Y are independent standard normal random variables and exp(x) = ex.
If the term in the exponent is complicated, we usually use the former expression. Let R

and θ denote the polar coordinates of the point (x, y). That is,

R =
√

X2 + Y 2 and Θ = tan−1
(

Y

X

)
.

Θ is the uppercase version of θ.
(i) Find the joint probability density function of R and Θ.

(ii) Show that R and Θ are independent.
Solution.

(i) Note that the random variables R and Θ take values in the respective intervals
(0, ∞) and (0, 2π). We set r = g(x, y) =

√
x2 + y2 and θ = h(x, y) = tan−1 (y/x).

Hence, x = r cos θ and y = r sin θ, which is essentially the conversion formulae from
polar to Cartesian coordinates.

I omit the differentiation process in this case, but anyway, J(x, y) = (x2 + y2)− 1
2 .

Hence,

fR,Θ(r, θ) = fX,Y (x, y)
det(J(x, y))

=
√

x2 + y2 · 1
2π

exp
(

−x2 + y2

2

)

= 1
2π

re− r2
2

which is the joint probability density function of R and Θ.
(ii) They are independent.

In the above example, R is actually a special continuous random variable. We say that
R follows a Rayleigh distribution. A Rayleigh distribution is often observed when the
overall magnitude of a vector is related to its directional components. One example



MA2116 ST2131 PROBABILITY Page 134 of 156

where the Rayleigh distribution naturally arises is when wind velocity is analysed in two
dimensions. Assuming that each component is uncorrelated, normally distributed with
equal variance, and zero mean, then the overall wind speed (vector magnitude) will be
characterised by a Rayleigh distribution.

If X ∼ Rayleigh(σ), where σ > 0, then

f(x) = x

σ2 exp
(

− x2

2σ2

)
.

We call σ the scale parameter. Not only is the Rayleigh distribution related to the normal
distribution, but it is also related to the exponential distribution! That is, if Y ∼ Exp(λ),
then

X =
√

Y ∼ Rayleigh
( 1√

2λ

)
.

Example 6.14 (ST2131 AY19/20 Sem 2). Let X be a uniform random variable on [0, 1]
and let Y be an independent exponential random variable with parameter 1.

(a) Find the joint p.d.f. of U = Y − X and V = XY .
(b) Find P (U ≥ 1).
(a) The joint density function of X and Y , due to independence, is

fX,Y (x, y) = 1
1 · e−y = e−y.

Let g(x, y) = y − x and h(x, y) = xy. The Jacobian determinant is

J(x, y) = det
(

∂g/∂x ∂g/∂y

∂h/∂x ∂h/∂y

)
= det

(
−1 1
y x

)
= −(x + y).

As
fU,V (u, v) = fX,Y (x, y)/|J(x, y)|,

then
fU,V (u, v) = e−y

x + y
,

but it is not in terms of u and v! As such, consider

Y = U + X =⇒ Y = U + V

Y
,

which yields the quadratic equation Y 2 − UY − V = 0. Thus,

Y = U ±
√

U2 + 4V

2 .
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Note that for the ± sign, we reject the negative. Suppose otherwise. Since y ≥ 0, we
have u −

√
u2 + 4v ≥ 0, so u2 ≥ u2 + 4v, and thus, 0 ≥ 4v, which is a contradiction

since V = XY , so v ≥ 0. Hence,

Y = U +
√

U2 + 4V

2 .

In a similar fashion,

X = −U +
√

U2 + 4V

2 .

Substituting these into fU,V (u, v), we have

fU,V (u, v) =
exp

[
−
(
U +

√
U2 + 4V

)
/2
]

√
U2 + 4V

, u ≥ −1, v ≥ 0.

(b) We first find the marginal density of U . That is, finding fU (u) from fU,V (u, v). So,

fU (u) =
∫ ∞

0

exp
[
−
(
u +

√
u2 + 4v

)
/2
]

√
u2 + 4v

dv.

Let t = −u +
√

u2 + 4v

2 , so dt

dv
= − 1√

u2 + 4v
. The integral becomes

∫ −∞

−u
−et dt = e−u

so fU (u) = e−u. So, P (U ≥ 1) =
∫ ∞

1
e−u du = 1/e.
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Chapter 7

Expectation Properties

7.1 Expectation of Sums of Random Variables

We start off this chapter with the following result: if a ≤ X ≤ b, then a ≤ E(X) ≤ b.
It is not difficult to see why this is true — we will only prove for the case where X is
a discrete random variable. The proof for the continuous counterpart is similar, but we
simply change the sum to an integral. We have

E(X) =
∑
all x

xp(x) ≥
∑
all x

ap(x) = a.

In a similar fashion, we can use the same technique to show that E(X) ≤ b.

Proposition 7.1. The following hold:
(i) If X and Y are jointly discrete random variables with joint probability

density function pX,Y , then

E[g(X, Y )] =
∑
all y

∑
all x

g(x, y)pX,Y (x, y)

(ii) If X and Y are jointly continuous random variables with joint probability
density function fX,Y , then

E[g(X, Y )] =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y) dxdy

Corollary 7.1. Some important consequences are as follows:
(i) Non-negativity: If g(x, y) ≥ 0 whenever pX,Y (x, y) > 0, then E[g(X, Y )] ≥

0
(ii) Linearity: E[g(X, Y ) + h(X, Y )] = E[g(x, Y )] + E[h(X, Y )]

(iii) Linearity: E[g(X) + h(Y )] = E[g(X)] + E[h(Y )]
(iv) Monotonicity: If jointly distributed random variables X and Y satisfy X ≤

Y , then E(X) ≤ E(Y ). Of course, this result can be easily extended to

E

(
n∑

i=1
aiXi

)
=

n∑
i=1

aiE(Xi),

which was covered in H2 Mathematics.
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The formula for the expectation of the sample mean, X, can be derived from (iv)
in Corollary 7.1. It is clear that E

(
X
)

= µ, so the expected value of the sample mean
is µ, the mean of the distribution. Hence, when µ is unknown, the sample mean is often
used to estimate it.
Example 7.1. Recall that the binomial distribution is closely linked to the Bernoulli
distribution. Suppose we perform an experiment n times and the probability of success
for each trial is p. We define X to be the number of successes in n Bernoulli(p) trials.
Since the expectation of each Bernoulli random variable is p and there are n Bernoulli
trials, by the linearity property of expectation, we can use this method to derive that
E(X) = np.
Example 7.2 (mean line segment length). This involves a concept known as the mean
line segment length. Suppose we have a unit square with vertices at (0, 0), (0, 1), (1, 0)
and (1, 1). What is the mean distance between any two points in the square?

Solution. The above is a very interesting problem. The answer is definitely not 1/2, but
actually, rather close to it. The mean distance is approximately 0.52140, or in exact
form,

2 +
√

2 + 5 ln(1 +
√

2)
15 .

Let us prove this result. Let U and V be independent uniform random variables as such:
U ∼ U(0, 1) and V ∼ U(0, 1). We wish to find the distribution of W = |U − V |. We find
the CDF of W first, before differentiating to find its PDF.

P (W ≤ w) = 1 − P (W > w)
= 1 − P (|U − V | > w)
= 1 − P (U − V < −w) − P (U − V > w)
= 1 − P (V > U + w) − P (U > V + w)

= 1 −
∫ 1−w

0
P (V > U + w)fU (u) du −

∫ 1−w

0
P (U > V + w)fV (v) dv

= 1 −
∫ 1−w

0
1 − (u + w) du −

∫ 1−w

0
1 − (v + w) dv

= 1 − (1 − w)2

Upon differentiation yields fW (w) = 2(1 − w), where 0 < w < 1. We use the formula

E[g(U, V )] =
∫ ∞

−∞

∫ ∞

−∞
g(u, v)fU,V (u, v) dudv.

Since we are interested in the mean distance, or rather the expected distance, then
g(U, V ) =

√
U2 + V 2, so g(u, v) =

√
u2 + v2. Note that fU,V (u, v) = 2(1 − u) · 2(1 − v)
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due to independence. Therefore,

E
(√

U2 + V 2
)

= 4
∫ 1

0

∫ 1

0

√
u2 + v2(1 − u)(1 − v) dudv.

Using polar coordinates, u = r cos θ and v = r sin θ. We need to find the bounds for r

and θ too. By considering the lower half of the region, 0 ≤ r ≤ sec θ and 0 ≤ θ ≤ π
4 . The

integral becomes

8
∫ π

4

0

∫ sec θ

0
r2(1 − cos θ)(1 − sin θ) drdθ = 8

∫ π
4

0

sec3 θ

12 − sec3 θ tan θ

20 dθ.

The integral of sec3 θ tan θ is a standard one because the derivative of sec θ is sec θ tan θ.
To integrate sec3 θ, we need to use integration by parts.∫ π

4

0
sec3 θ dθ =

∫ π
4

0
sec θ sec2 θ

= [sec θ tan θ]
π
4
0 −

∫ π
4

0
tan θ sec θ tan θ dθ

=
√

2 −
∫ π

4

0
sec θ(sec2 θ − 1) dθ

=
√

2 −
∫ π

4

0
sec3 θ dθ +

∫ π
4

0
sec θ dθ

2
∫ π

4

0
sec3 θ dθ =

√
2 + [ln | sec θ + tan θ|]

π
4
0∫ π

4

0
sec3 θ dθ = 1√

2
+ 1

2 ln
(√

2 + 1
)

The rest of the working is left as a simple exercise. □

7.2 Covariance, Variance and Correlation

Definition 7.1 (covariance). The covariance of jointly distributed random variables
X and Y , denoted by cov(X, Y ), is defined by

cov(X, Y ) = E(X − µX)(Y − µY ),

where µX and µY denote the means of X and Y respectively.

Definition 7.2 (correlation). If cov(X, Y ) ̸= 0, we say that X and Y are correlated,
but if cov(X, Y ) = 0, we say that X and Y are uncorrelated.

An alternative formula for covariance is

cov(X, Y ) = E(XY ) − E(X)E(Y ).
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As a result, if X and Y are independent, it is clear that cov(X, Y ) = 0. However, the
converse is not true. Correlation does not imply causation†.

Proposition 7.2. If X and Y are independent random variables, then for any
functions g, h : R → R, we have

E[g(X)h(Y )] = E[g(X)]E[h(Y )].

Some other properties of covariance are as follows:
(i) Var(X) = cov(X, X)

(ii) Symmetry: cov(X, Y ) = cov(Y, X)
(iii)

cov

 n∑
i=1

aiXi,
m∑

j=1
bjYj

 =
n∑

i=1

m∑
j=1

aibj cov (Xi, Yj)

(iv)

cov

 n∑
i=1

aiXi,
m∑

j=1
bjYj

 =
n∑

i=1

m∑
j=1

aibj cov (Xi, Yj)

(v)

Var
(

n∑
k=1

Xk

)
=

n∑
k=1

Var (Xk) + 2
∑
i<j

cov (Xi, Xj)

We only prove (iv).

Proof.

cov

 n∑
i=1

aiXi,
m∑

j=1
bjYj

 = E

 n∑
i=1

m∑
j=1

aibjXiYj

− E

(
n∑

i=1
aiXi

)
E

 m∑
j=1

bjYj


=

n∑
i=1

m∑
j=1

aibjE (XiYj)−
n∑

i=1

m∑
j=1

aibjE (Xi) E (Yj)

=
n∑

i=1

m∑
j=1

aibj cov (Xi, Yj)

†I strongly recommend a video by Zach Star which illustrates how easy it is to lie with Statistics. For
example, an increase in ice cream sales, as well as cases of sunburn, are caused by the hot weather,
whereas there is a correlation between the number of ice cream sales and the number of sunburn cases.
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Let X1, X2, . . . , Xn be independent random variables. Recall from H2 Mathematics
that

Var
(

n∑
k=1

Xk

)
=

n∑
k=1

Var(Xk).

Under independence, the variance of a sum is the sum of variances. We provide more
information about the random variables. Suppose each of the Xi’s has an expected value
of µ and variance σ2. We let

X =
n∑

i=1

Xi

n

be the sample mean. The quantities Xi − X, for 1 ≤ i ≤ n, are called deviations as they
equal to the differences between the individual data and the sample mean. The random
variable

S2 =
n∑

i=1

(
Xi − X

)2

n − 1

is called the sample variance. We shall prove that E(S2) = σ2. That is, S2 is used as an
estimator for σ2 instead of the more natural choice of

n∑
i=1

(
Xi − X

)2

n
.

Proof. Note that Xi − X = Xi − µ + µ − X. Hence,(
Xi − X

)2
=
(
Xi − µ + µ − X

)2

= (Xi − µ)2 +
(
X − µ

)2
− 2

(
X − µ

)
(Xi − µ)

When we take the sum of i from 1 to n, note that X is unaffected by the index. Hence,

S2 = 1
n − 1

[
n∑

i=1
(Xi − µ)2 +

n∑
i=1

(
X − µ

)2
− 2

(
X − µ

) n∑
i=1

(Xi − µ)
]

= 1
n − 1

[
n∑

i=1
(Xi − µ)2 + n

(
X − µ

)2
− 2n

(
X − µ

)2
]

= 1
n − 1

[
n∑

i=1
(Xi − µ)2 − n

(
X − µ

)2
]

E
(
S2
)

= 1
n − 1

[
n∑

i=1
E
[
(Xi − µ)2

]
− nE

[(
X − µ

)2
]]

By the definition of variance, as E
[
(X − µ)2

]
= Var(X), then it is clear that

n∑
i=1

E
[
(Xi − µ)2

]
= nσ2.



MA2116 ST2131 PROBABILITY Page 141 of 156

The term E

[(
X − µ

)2
]

is called the variance of the sample mean. We wish to find the
sum of it from i = 1 to i = n. This is straightforward because

n∑
i=1

E

[(
X − µ

)2
]

= Var
(
X
)

= σ2

n
.

Putting everything together,

E
(
S2
)

= 1
n − 1

(
nσ2 − n

(
σ2

n

))
= σ2.

Example 7.3 (ST2132 AY18/19 Sem 2 Tutorial 1). Let a population consist of nine 0’s
and one 1. Make 2 random draws without replacement. Let X1 and X2 denote the
outcomes of these 2 draws.

(a) Find the distribution of X1.
(b) Find the mean and variance of X1.
(c) Find the conditional distribution of X2 given X1 = 0, and the similar distribution

given X1 = 1. Hence, find the joint distribution of X1 and X2. Hence, find the
distribution of X2.

(d) Find cov(X1, X2).

Solution.
(a) We have P (X1 = 0) = 0.9 and P (X1 = 1) = 0.1
(b) E(X1) = 0.1 and Var(X1) = 0.1 · 0.9 = 0.09
(c) We have

P (X2 = 0|X1 = 0) = 8
9

P (X2 = 1|X1 = 0) = 1
9

and

P (X2 = 0|X1 = 1) = 1
P (X2 = 1|X1 = 1) = 0

For the joint distribution, P ({X2 = 0} ∩ {X1 = 0}) = P (X2 = 0|X1 = 0) · P (X1 =
0) = 8/9 · 9/10 = 0.8. The other probabilities can be computed. Namely, finding
P ({X2 = i} ∩ {X1 = j} for i = 1, 2 and j = 1, 2.
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(d) We have

P ({X2 = 0} ∩ {X1 = 0}) = 0.8
P ({X2 = 0} ∩ {X1 = 1}) = 0.1
P ({X2 = 1} ∩ {X1 = 0}) = 0.1
P ({X2 = 1} ∩ {X1 = 1}) = 0

We have

cov(X1, X2) = E(X1X2) − E(X1)E(X2)
=
∑
all x

x1x2P (x1x2 = x) − 0.1 · 0.1

= 0 · 0 · 0.8 + 0 · 1 · 0.1 + 1 · 0 · 0.1 + 1 · 1 · 0 − 0.01
= −0.01

so cov(X1, X2) = −0.01.
Example 7.4 (ST2132 AY18/19 Sem 2 Tutorial 1). Let X1, . . . , Xn be random variables,
with E(Xi) = µi and Var(Xi) = σ2

i . Their variance matrix (or variance-covariance
matrix) V is an n × n matrix with

Vij = cov(Xi, Xj) = E[(Xi − µi)(Xj − µj)].

(a) What are the diagonal entries of V ?
(b) Is V symmetric?
(c) Let X be distributed as B(n, p) and Y = n − X. What is the variance matrix of

X and Y ?
(d) If X1, . . . , Xn are independent, what can you comment about V ?
(e) Repeat (d), if X1, . . . , Xn have the same distribution.
(f) Repeat (d), if X1, . . . , Xn are IID.

Solution.
(a)

Vij = E(XiXj) − E(Xi)µj − E(Xj)µi + µiµj = E(XiXj) − µiµj

Vii = E(X2
i ) − µ2

i = E(X2
i ) − [E(Xi)]2

so the diagonal entries of V represent the variances.
(b) Yes, since Vij = Vji.
(c) We have

V11 = Var(X) = np(1 − p) and V22 = Var(n − X) = np(1 − p).
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Also, as E(X) = np and E(Y ) = n − np, then

V12 = E ((X − np) (Y − n + np))
= E ((X − np) (np − X))

= −E
(
(X − np)2

)
= −Var (X)
= −np (1 − p)

Note that V12 = V21 due to symmetry.
(d) If X and Y are independent random variables, then cov(X, Y ) = 0. Using this

fact, we see that cov(Xi, Xj) = 0 for all 1 ≤ i < j ≤ n. Thus, V is now a diagonal
matrix, with each diagonal entry representing the variance of Xi.

(e) The diagonal entries are the same.
(f) V is just a constant multiple of the I, where the constant is the common variance.

Example 7.5 (MA3238 AY13/14 Sem 2 Homework 3). A total of n bar magnets are placed
end to end in a line on the table, where the orientation of the south and north poles
of each magnet is randomly chosen from the two possibilities with equal probability.
Adjacent magnets with opposite poles facing each other join to form a block. Find the
mean and variance of the number of blocks of joined magnets.

Solution. Denote the bar magnets by 1, . . . , n. Call the bond between magnet i and
magnet i + 1 broken if they are not joined together. The key observation is that if there
are a total of k broken bonds for 1 ≤ k ≤ n − 1, then k + 1 disjoint blocks. Let N be the
number of blocks and B be the number of broken bonds. Then,

N = B + 1.

As B denotes the number of broken bonds, then

B =
n−1∑
i=1

Yi,

where Yi is the indicator random variable denoting the event that the bond between
magnet i and i + 1 is broken. By the linearity of expectation,

E(N) = 1 +
n−1∑
i=1

E(Yi)

= 1 + (n − 1)E(Yi) for any 1 ≤ i ≤ n
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For two adjacent magnets i and i + 1, they are broken if and only if they assume one of
the following orientations:

NS | SN or SN | NS

As there are only a total of four orientations, the probability that any adjacent magnets
are disjoint is 1/2. Thus, E(Yi) = 1/2 for all 1 ≤ i ≤ n. Therefore,

E(N) = 1 + n − 1
2 = n + 1

2 .

Note that the variance of N is

Var(N) = Var
(

n−1∑
i=1

Yi

)

=
n∑

i=1
Var(Yi) + 2

∑
1≤i<j≤n−1

cov(Yi, Yj)

=
n∑

i=1

(
E(Y 2

i ) − (E(Yi))2
)

+ 2
∑

1≤i<j≤n−1
cov(Yi, Yj)

=
n∑

i=1

(
E(Yi) − (E(Yi))2

)
+ 2

∑
1≤i<j≤n−1

cov(Yi, Yj)

= n

4 − 2
∑

1≤i<j≤n−1
cov(Yi, Yj)

Note that cov(YiYj) = E(XiXj) − E(Xi)E(Xj). We claim that if j = i + 1, the covari-
ance is non-zero. If i < j, then Yi depends on the orientation of magnets i and i + 1,
whereas Yj depends on the orientation of magnets j and j + 1. □

Definition 7.3 (correlation). The correlation of random variables X and Y , denoted
by ρ(X, Y ), is defined by

ρ(X, Y ) = cov(X, Y )√
Var(X) Var(Y )

.

One would be more familiar with the formula given in the List of Formulae (MF26)
during his/her A-Level days. That is, the product moment correlation coefficient, r.

Definition 7.4 (product moment correlation coefficient).

r =
∑ (x − x)∑ (y − y)[√∑ (x − x)2

] [√∑ (y − y)2
]
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The two quantities ρ and r are of course equivalent. We can show that −1 ≤
ρ(X, Y ) ≤ 1.

Proof. Note that cov(X, Y ) = E[(X − µX)(Y − µY )], Var(X) = E[(X − µX)2] and
Var(Y ) = E[(Y − µY )2]. Hence, the original equation for ρ becomes

ρ(X, Y ) = E[(X − µX)(Y − µY )]√
E[(X − µX)2]E[(Y − µY )2]

.

Using the substitution U = X − µX and V = Y − µY ,

ρ(X, Y ) = E(UV )√
E(U2)E(V 2)

.

Assume that X and Y are continuous random variables, which would imply that U and
V are continuous random variables too. The proof will be the same for the discrete case,
just that the integrals become sums. We define f(t) to be the following polynomial in t:

f(t) = E[(tU + V )2]

Then, expanding the right side yields

f(t) = E
(
U2
)

t2 + 2tE (UV ) + E
(
V 2
)

.

Note that f(t) ≥ 0 since Var(X) ≥ 0 if and only if E(X2) ≥ (E(X))2 ≥ 0. Hence, the
discriminant of f(t), ∆ must satisfy ∆ ≤ 0. That is,

(2E(UV ))2 − 4(E(U2))(E(V 2)) ≤ 0.

Rearranging yields the formula

(E(UV ))2 ≤ E(U2)E(V 2),

which implies that −1 ≤ ρ(X, Y ) ≤ 1. To conclude, we remark that the inequality
(E(UV ))2 ≤ E(U2)E(V 2) is the famous Cauchy-Schwarz inequality.

The correlation coefficient is a measure of the degree of linearity between X and Y .
A value of ρ(X, Y ) near +1 or −1 indicates a high degree of linearity between X and
Y , whereas a value near 0 indicates a lack of such linearity. A positive value of ρ(X, Y )
indicates that Y tends to increase as X does, whereas a negative value indicates that Y

tends to decrease as X increases. If ρ(X, Y ) = 0, then X and Y are uncorrelated. If X

and Y are independent, then ρ(X, Y ) = 0. However, the converse is not true.

7.3 Conditional Expectation
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Definition 7.5 (conditional expectation). If X and Y are jointly distributed discrete
random variables, then if pY (y) > 0,

E(X|Y = y) =
∑
all x

xpX|Y (x|y).

If X and Y are jointly distributed continuous random variables, then if fY (y) > 0,

E(X|Y = y) =
∫ ∞

−∞
xfX|Y (x|y) dx.

Note that for both the discrete and continuous cases, we can replace X with g(X)
and the formula will just have minor tweaks to it. That is,

E(g(X)|Y = y) =
∑
all x

g(x)pX|Y (x|y) for the discrete case and

E(g(X)|Y = y) =
∫ ∞

−∞
g(x)fX|Y (x|y) dx for the continuous case

Hence,

E

(
n∑

i=1
Xi|Y = y

)
=

n∑
i=1

E(Xi|Y = y).

We can compute expectations and probabilities by conditioning.

Definition 7.6 (conditional variance). The conditional variance of X given Y = y

is defined as
Var(X|Y ) = E((X − E(X|Y ))2|Y ).

A useful relationship between Var(X) and Var(X|Y ), called the law of total variance,
is as follows:

Proposition 7.3 (law of total variance).

Var(X) = E(Var(X|Y )) + Var(E(X|Y ))

Example 7.6 (ST2131 AY19/20 Sem 2). Let N be a Poisson random variable with mean
1. Let (ξi)i∈N be i.i.d. standard normal random variables. Define

X :=
N∑

i=1
ξi = ξ1 + ξ2 + . . . + ξN .

Find the mean and variance of X.
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Solution. By the law of total expectation,

E(X) =
n∑

i=1
E(X|N = i)P (N = i)

=
n∑

i=1
E(X|N = i) · e−1

i!

= E(ξ1) · e−1

1! + E(ξ1 + ξ2) · e−1

2! + . . . + E(ξ1 + ξ2 + . . . + ξn) · e−1

n!

= 0 · e−1

1! + 0 · e−1

2! + . . . + 0 · e−1

n!
= 0

For the variance, by the law of total variance (Proposition 7.3),

Var(X) = E(Var(X|N)) + Var(E(X|N)) = E(N Var(X)) = E(N) = 1.

□

7.4 Moment Generating Function

The moment generating function (MGF) of a real-valued random variable, X, is
an alternative specification of its probability distribution. It provides the basis of an
alternative route to analytical results compared with working directly with PDFs or
CDFs. There are particularly simple results for the MGFs of distributions defined by the
weighted sums of random variables. However, not all random variables have MGFs.

Definition 7.7 (moment generating function). The MGF of a random variable X,
denoted by MX , is defined as

MX(t) = E
(
etX

)
.

If X is a discrete random variable with PDF pX , then

MX(t) =
∑
all x

etxpX(x).

If X is a continuous random variable with PDF fX , then

MX(t) =
∫ ∞

−∞
etxfX(x) dx.

We call such a function a moment generating function because it generates all the
moments of this random variable X. Indeed, for n ≥ 0,

E (Xn) = M
(n)
X (0),



MA2116 ST2131 PROBABILITY Page 148 of 156

where
M

(n)
X (0) = dn

dtn
MX(t) when t is evaluated at 0.

Proof. Using series expansion,

E(etX) = E

( ∞∑
k=0

(tX)k

k!

)
=

∞∑
k=0

E(Xk)tk

k! =
∞∑

k=0

M
(k)
X (0)tk

k! .

The result follows by equating the coefficient of tn.

Proposition 7.4. The MGF of a random variable satisfies two properties. We state
them.

(i) Multiplicativity: If X and Y are independent, then

MX+Y (t) = MX(t)MY (t).

(ii) Let X and Y be random variables with MGFs being MX and MY

respectively. If there exists h > 0 such that

MX(t) = MY (t) for all − h < t < h.

Then, it implies that X and Y have the same distribution, meaning that
fX = fY .

We state and prove the MGFs for some random variables.

Proposition 7.5 (MGF of Bernoulli random variable). If X ∼ Bernoulli(p), then

M(t) = 1 − p + pet.

Proof. Using the formula, M(t) = et(0)P (X = 0) + et(1)P (X = 1) = (1 − p) + pet.

Proposition 7.6 (MGF of binomial random variable). If X ∼ B(n, p), then

M(t) = (1 − p + pet)n.

Proof. Using the formula, and writing it in sigma notation,

n∑
k=0

ekt

(
n

k

)
pkqn−k = qn

n∑
k=0

(
n

k

)(
pet

q

)k

= qn

(
1 + pet

q

)n

= (1 − p + pet)n.
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Proposition 7.7 (MGF of geometric random variable). If X ∼ Geo(p), then

M(t) = pet

1 − qet
.

Proof. Using the formula,

M(t) =
n∑

k=1
ektpqk−1 = p

q

n∑
k=1

(qet)k = pet

1 − qet
.

Example 7.7. If X ∼ Geo (p), find an expression for E
(
X3).

Solution. The moment generating function, M (t), for X is E
(
etX

)
. If X ∼ Geo(p), then

M(t) =
n∑

k=1
ektpqk−1 = p

q

n∑
k=1

(qet)k = pet

1 − qet
,

where q = 1 − p. Hence, the third moment, or E(X3), is the coefficient of t3 divided by
3! = 6 in the series expansion of M(t). □

Proposition 7.8 (MGF of Poisson random variable). If X ∼ Po(λ), then

M(t) = exp(λ(et − 1)).

Proof.

M(t) =
n∑

k=0

ekte−λλk

k! = e−λ
n∑

k=0

(λet)k

k! = e−λ
(
eλet

)
= exp(λ(et − 1))

Proposition 7.9 (MGF of uniform random variable). If X ∼ U(a, b), then

M(t) = ebt − eat

t(b − a) .

Proof.

M(t) =
∫ a

−∞

ekt

b − a
dk +

∫ b

a

ekt

b − a
dk +

∫ ∞

b

ekt

b − a
dk =

∫ b

a

ekt

b − a
dk = ebt − eat

t(b − a)
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Proposition 7.10 (MGF of normal random variable). If X ∼ N(µ, σ2), then

M(t) = exp
(

µt + σ2t2

2

)
.

Proof. We have

MX(t) = 1
σ

√
2π

∫ ∞

−∞
exp

(
tk − (k − µ)2

2σ2

)
dk

= 1
σ

√
2π

∫ ∞

−∞
exp

(
− 1

2σ2
(
k − (µ + σ2t)

)2 + (µ + σ2t)2 − µ2

2σ2

)
dk

= exp
(

µt + σ2t2

2

)
· 1

σ
√

2π

∫ ∞

−∞
exp

(
− 1

2σ2
(
k − (µ + σ2t)

)2)
dk

= exp
(

µt + σ2t2

2

)
,

since the integral equals 1 (it is the total mass of a N(µ + σ2t, σ2) density).

Proposition 7.11 (MGF of exponential random variable). If X ∼ Exp(λ), then

M(t) = λ

λ − t

for t < λ.

Proof.
M(t) =

∫ ∞

0
etkλe−λk dk = λ

λ − t

M(t) is only defined for t < λ because the expectation of an exponential random variable
is always positive. To justify this, if f(x) = λe−λx, then E(X) = 1

λ . By the definition of
the exponential distribution, as λ > 0, the result follows.



MA2116 ST2131 PROBABILITY Page 151 of 156

Chapter 8

Limit Theorems

8.1 Statistical Inequalities

Theorem 8.1 (Markov’s inequality). Let X be a non-negative random variable. For
a > 0,

P (X ≥ a) ≤ E(X)
a

.

Proof. We only prove this for the continuous random variable X. The discrete case is
very similar, just that the integral is replaced by summation.

E (X) =
∫ ∞

−∞
xf (x) dx

=
∫ ∞

0
xf (x) dx since X is non-negative

≥
∫ ∞

a
xf (x) dx

≥
∫ ∞

a
af (x) dx since f (x) is non-negative

= aP (X ≥ a)

which concludes the proof.

Theorem 8.2 (Chebyshev’s inequality). Let X be a random variable with finite
mean µ and variance σ2. Then, for a > 0, we have

P (|X − µ| ≥ a) ≤ σ2

a2 .

Proof. Applying Markov’s inequality (Theorem 8.1),

P (|X − µ| ≥ a) = P
(
(X − µ)2 ≥ a2

)
≤

E
[
(X − µ)2

]
a2 = Var (X)

a2 .

Example 8.1 (STEP 3 2016 Question 12). The probability of a biased coin landing heads
up is 0.2. It is thrown 100n times, where n is an integer greater than 1. Let α be the
probability that the coin lands heads up N times, where 16n ≤ N ≤ 24n. We can use
Chebyshev’s inequality to prove the following two results:



MA2116 ST2131 PROBABILITY Page 152 of 156

(i) α ≥ 1 − 1
n

(ii) 1 + n + n2

2! + · · · + n2n

(2n)! ≥
(

1 − 1
n

)
en

However, in the test, their form of Chebyshev’s inequality (Theorem 8.2) is slightly
different. That is for k > 0,

P (|X − µ| > kσ) ≤ 1
k2 .

Solution.
(i) We first recognise that this is a setup modelling a binomial distribution. Let X be

the random variable denoting the number of times the coin lands heads up, out of
100n. Then, α = P (|X − 20n| ≤ 4n). Note that E(X) = 20n, Var(X) = 16n and
|X − 20n| ≤ 4n. Removing the modulus, 16n ≤ X ≤ 24n, which indeed satisfies
the original inequality that 16n ≤ N ≤ 24n. By Chebyshev’s Inequality,

P (|X − 20n| > 4n) ≤ 16n

(4n)2

1 − P (|X − 20n| ≤ 4n) ≤ 1
n

1 − 1
n

≤ P (|X − 20n| ≤ 4n)

α ≥ 1 − 1
n

and the result follows.
(ii) This is quite interesting. Observe that the left side of the inequality is the partial

sum of the Maclaurin Series of en. If we can prove that

1 + n + n2

2! + · · · + n2n

(2n)! ≥ αen,

then we are done. Recall that the only discrete random variable we studied
which contains the exponential function is the Poisson random variable. Suppose
Y ∼ Po(n). Then, µ = σ2 = n. Set a = n. Substituting these into Chebyshev’s
inequality (Theorem 8.2) yields

P (|Y − n| > n) ≤ 1
n

.

We consider the modulus inequality first. This is equivalent to Y − n ≥ n or Y −
n ≤ −n, which implies that Y ≥ 2n or Y ≤ 0 respectively. The latter does not make
sense because the support of Y is the non-negative integers. Thus, the inequality
becomes

P (Y > 2n) ≤ 1
n

.
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With some simple algebraic manipulation,

1 − 1
n

≤ P (Y ≤ 2n).

Hence,

1 − 1
n

≤
2n∑
i=0

e−nni

i!
2n∑
i=0

ni

i! ≥ αen

which concludes our proof.
The importance of Markov’s and Chebyshev’s inequalities (Theorems 8.1 and 8.2
respectively) is that they enable us to derive bounds on probabilities when only the
mean, or both the mean and the variance, of the probability distribution are known.
Of course, if the actual distribution were known, then the desired probabilities can be
exactly computed and we would not need to resort to bounds.

Theorem 8.3 (Jensen’s inequality). If X is a random variable and ϕ is a convex
function, then

ϕ(E(X)) ≤ E(ϕ(X)).

Corollary 8.1. For x ≥ 0, the graph of ϕ(x) = xn, where n ∈ N, is convex. Hence,

E(Xn) ≥ (E(X))n for n ∈ N.

Corollary 8.2. If Var(X) = 0, then X is a constant. In other words, P (X =
E(X)) = 1. We say that X is a degenerate random variable.

Proof. By Chebyshev’s inequality (Theorem 8.2), for any n ≥ 1,

0 ≤ P

(
|X − µ| >

1
n

)
≤ Var(X)

1/n2 = 0.

By the squeeze theorem, it implies that

P

(
|X − µ| >

1
n

)
= 0.

Taking limits on both sides and using the continuity property of probability,

0 = lim
n→∞

P

(
|X − µ| >

1
n

)
= P

(
lim

n→∞

{
|X − µ| >

1
n

})
= P (X ̸= µ).

This asserts that P (X = µ) = 1.
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8.2 Laws of Large Numbers (LLN)

Theorem 8.4 (weak law of large numbers (WLLN)). Let X1, X2, . . . , Xn be a
sequence of independent and identically distributed random variables, with a
common mean µ. We define the sample mean to be

X = 1
n

(X1 + X2 + . . . + Xn).

Then, for any ε > 0,
lim

n→∞
P
(∣∣∣X − µ

∣∣∣ ≥ ε
)

= 0.

In other words, the sample mean converges to the expected value as n → ∞.

Proof. We shall prove this theorem only under the additional assumption that the
random variables have a finite variance σ2. As It is clear that E(X) = µ and Var(X) =
σ2

n , then by Chebyshev’s inequality (Theorem 8.2),

P
(
|X − µ| ≥ ε

)
≤ σ2

nε2 .

As n → ∞, the expression on the right side of the inequality tends to 0.

Theorem 8.5 (strong law of large numbers (SLLN)). Let X1, X2, . . . , Xn be a
sequence of independent and identically distributed random variables, each having
a finite mean µ = E(Xi). Recall how the sample mean is defined when we
introduced the WLLN. Then, the SLLN states that as n → ∞,

X → µ.

In probabilistic terms,
P
({

lim
n→∞

X = µ
})

= 1.

The weak law states that for a specified large n, the average X is likely to be near
µ. Thus, it leaves open the possibility that |X − µ| > ε happens an infinite number of
times, although at infrequent intervals.

In contrast, the strong law shows that this almost surely will not occur. Note that
it does not imply that with probability 1, we have that for any ε > 0, the inequality
|X − µ| < ε holds for all large enough n since the convergence is not necessarily uniform
on the set where it holds.
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Almost sure convergence implies convergence in probability, but the converse is not true.
The proof is out of the scope of our discussion as it is with reference to Probability Theory
at a higher level. It uses a complex branch of Pure Mathematics called Measure Theory
and we use a lemma, called the Borel-Cantelli lemma, to prove the aforementioned
statement. This is why there is a distinction between the weak law and the strong law.

8.3 Central Limit Theorem (CLT)

The central limit theorem (CLT) is one of the most remarkable results in Probability
Theory. It states that the sum of a large number of independent random variables has a
distribution that is approximately normal. Hence, it not only provides a simple method
for computing approximate probabilities for sums of independent random variables, but
it also helps explain the remarkable fact that the empirical frequencies of so many natural
populations exhibit bell-shaped curves.

We will only study one form of the CLT and it is known as the Classical CLT. Fun
fact, if you were to go to Wikipedia, you will find that there are three other types of
CLT, namely the Lyapunov CLT, Lindenberg CLT and the multidimensional CLT. All
these will be out of scope of our discussion.

Without further ado, we state the simplest form of the CLT — the classical CLT.

Theorem 8.6 (central limit theorem). Let X1, X2, . . . , Xn be a sequence of inde-
pendent and identically distributed random variables, each having mean µ and
variance σ2. Then, the distribution of

X1 + X2 + . . . + Xn − nµ

σ
√

n

tends to the standard normal as n → ∞.

Lemma 8.1. We have two results, one of which is related to the sum of Xi’s, and
one is related to the sample mean.

(i)
X1 + X2 + . . . + Xn ∼ N(nµ, nσ2) approximately

(ii)
1
n

(X1 + X2 + . . . + Xn) ∼ N

(
µ,

σ2

n

)
approximately
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Example 8.2 (ST2132 AY18/19 Sem 2 Tutorial 1). Let X1, . . . , Xn be IID with the
Bernoulli(p) distribution.

(a) Let xi be a realisation of Xi. As n → ∞, what can you say about x1, . . . , xn?
(b) Let Sn = X1 + . . . + Xn. Derive the distribution of Sn, using the following fact:

There are (
n

k

)
= n!

k!(n − k)!

ways to arrange k 1’s and (n − k) 0’s in a row.
(c) Find the expectation and standard deviation of Sn.
(d) What does the central limit theorem say about Sn as n → ∞?

Solution.
(a) The mean converges to p and the variance converges to p(1 − p).
(b) Suppose P (Xi = 0) = p and P (Xi = 1) = 1 − p as defined by the Bernoulli distri-

bution. Then, P (S1 = 0) = p and P (S1 = 1) = 1 − p. At this stage, it is apparent
that Sn resembles a binomial distribution, so

P (Sn = k) = P (X1 + X2 + . . . + Xn = k) =
(

n

k

)
pk(1 − p)k.

(c) E(Sn) = np and Var(Sn) = np(1 − p), so Sn ∼ B (np, np (1 − p)).
(d) The distribution converges to the standard normal distribution N(0, 1).
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